首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Femtosecond lasers have proved to be effective tools for micromachining silicon carbide material. In the drilling process, however, when the debris around the hole was not removed efficiently, the depth of hole would not increase further. In this paper, alcohol-assisted photoetching of 6H silicon carbide was investigated using a femtosecond laser. Machining in the presence of alcohol was beneficial to the debris ejection from the hole. The alcohol flow and volatilization was also helpful to further carry away the ablation debris and reduce the ablated material redeposition. The experiment showed that photoetching assisted by alcohol produced cleaner ablation effect and deeper hole than in ambient air. Moreover, alcohol assistance would not produce additional thermal damage around the hole. Vias were formed in a 250 μm thick wafer with alcohol-assisted photoetching technique using a femtosecond laser, which demonstrated the potential for this processing technique.  相似文献   

2.
A pulsed Nd:YAG laser (10 mJ, 12 ns, 1064 nm) was employed to study the IR irradiation effects on metallic samples of cadmium. The laser was irradiated for 100, 200, and 300 shots under a vacuum ~10?3 Torr. The results were investigated using a Hi Tech S3000H Scanning Electron Microscope (SEM) and X’pert Pro PANalytical X-ray Diffractometer (XRD). The micrographs obtained from SEM reveal that the surface morphological changes have occurred in the form of a crater. The forward expansion of plasma into an ambient gas coupled with the recondensation of the target surface results in the formation of debris. Large temperature gradients produce variations in the thermal resistance that leads to the distributed shape of the heat-affected zone. The hydrodynamic effects are apparent with a liquid flow to form the recast material around the periphery of the laser focal area. The turbulent resolidified material is formed when surface asperities are accelerated away from the liquid surface during each laser pulse due to melting followed by the thermal expansion of the liquid. The positive feed back of the repeated pulses resulted in the form of ripples. Grains appear on the surface as evidence of heterogeneous nucleation. The confirmation of the formation of these structures has been done by X-ray Diffractometer (XRD).  相似文献   

3.
In the paper, the result on femtosecond laser drilling of alumina ceramic substrate was reported. The effects of various laser parameters such as different focus position, traverse speed, drilling pattern, pausing time, etc. on the drilled hole quality in terms of surface finish, heat affected zone (HAZ), hole circularity, debris, microcracks were studied. The quality of laser-drilled holes on alumina ceramic substrates was evaluated with optical microscope, SEM/EDX, and X-ray μ-CT analysis. The optimum drilling conditions were identified. High-quality laser-drilled holes on alumina ceramic substrates were demonstrated. The developed process has potential application in manufacturing of alumina substrate based electronic devices.  相似文献   

4.
利用ABAQUS有限元软件进行了单个圆形高斯光斑的激光冲击强化数值模拟,分析材料表面光斑中心区域形成的"残余应力洞"现象,并通过分析材料的动态力学响应特征揭示了"残余应力洞"的形成机制。结果表明:在冲击波加载时,光斑边界处会产生很强的剪切应力,形成向四周传播的表面稀疏波和向材料内部传播的剪切波。当稀疏波同时传播到光斑中心,发生相遇、汇聚,使材料产生急剧的上下位移过程,造成冲击波加载塑性变形后的二次塑性变形。二次塑性变形中形成了较大的剪切塑性应变,并降低了冲击波加载阶段产生的轴向和径向塑性应变,使残余压应力降低,从而形成"残余应力洞"。  相似文献   

5.
利用Nd:YAG纳秒激光脉冲,在能量密度为1~10 J/cm2范围内辐照单晶硅,形成了表面锥形微结构,在SF6气氛和空气环境下均形成了锥形尖峰表面微结构。SF6气氛下产生的锥形尖峰顶端都有小球,部分锥形上还有二次尖峰形成,空气中纳秒激光诱导的锥形尖峰微结构顶端和边缘有由液滴固化形成的粒状物质,不同于利用准分子纳秒激光诱导的细长须状结构和飞秒激光辐照下产生的具有表面枝蔓状纳米结构的锥形微结构。实验结果表明,这种尖峰微结构的形成与辐照激光的波长和脉冲持续时间有关。对空气中微构造硅的辐射反射的初步研究表明,在500~2 400 nm范围内的光辐射反射率不高于20%。  相似文献   

6.
The morphology of a glass surface having a transparent coating processed with focused femtosecond laser pulses is investigated. The transparent coating is formed of poly-methyl methacrylate (PMMA). When the glass was coated with a PMMA film with a thickness of 2.8 μm, bumps were formed over a wide range of axial focus positions. The same laser pulse energy produced cavities when processing bare glass with no coating. The bumps were formed as a result of suppressing material emission from the glass surface by a shielding effect of plasma generated by ablation of the PMMA film and by physical blocking of the PMMA film. A thinner film with a thickness of 0.7 μm produced a reduced shielding effect, forming an exploded bump with a small pit at its center and debris around the periphery. PACS 44.10.+i; 61.80.Ba; 79.20.Ds  相似文献   

7.
Nd:YAG纳秒激光诱导硅表面微结构的演化   总被引:2,自引:0,他引:2       下载免费PDF全文
利用Nd:YAG纳秒激光(波长为532和355 nm)对单晶硅在真空中进行了累积脉冲辐照,研究了表面微结构的演化情况.在激光辐照的初始阶段,532和355 nm激光脉冲均在硅表面诱导出了波纹结构,后者辐照硅表面后形成了近似同心但稍显混乱的环形波纹结构.随着脉冲数的增加,波纹结构逐渐演化为一种类似珠形的凹凸结构,最后形成准规则排列的微米量级锥形结构,该微结构的生长依赖于表面张力波和结构自组织.分析发现,形成的交叉环形结构主要是在355 nm激光辐照硅的过程中,表面张力波导致波纹结构部分叠加的结果.  相似文献   

8.
Pulsed UV laser drilling can be applied to fabricate vertical electrical interconnects (vias) for AlGaN/GaN high electron mobility transistor devices on single-crystalline silicon carbide (SiC) substrate. Through-wafer micro holes with a diameter of 50-100 μm were formed in 400 μm thick bulk 4H-SiC by a frequency-tripled solid-state laser (355 nm) with a pulse width of ≤30 ns and a focal spot size of ∼15 μm. The impact of laser machining on the material system in the vicinity of micro holes was investigated by means of micro-Raman spectroscopy and transmission electron microscopy. After removing the loosely deposited debris by etching in buffered hydrofluoric acid, a layer of <4 μm resolidified material remains at the side walls of the holes. The thickness of the resolidified layer depends on the vertical distance to the hole entry as observed by scanning electron microscopy. Micro-Raman spectra indicate a change of internal strain due to laser drilling and evidence the formation of nanocrystalline silicon (Si). Microstructure analysis of the vias’ side walls using cross sectional TEM reveals altered degree of crystallinity in SiC. Layers of heavily disturbed SiC, and nanocrystalline Si are formed by laser irradiation. The layers are separated by 50-100 nm thick interface regions. No evidence of extended defects, micro cracking or crystal damage was found beneath the resolidified layer. The precision of UV laser micro ablation of SiC using nanosecond pulses is not limited by laser-induced extended crystal defects.  相似文献   

9.
Plasma splashing from Al and Cu target materials and the growth of thin films on Cu and Al, respectively, has been studied using a Q-switched Nd:YAG laser with a 1064-nm, 80-mJ, 8-ns pulse width as the source of ablation. The target kept rotating and the substrate, Cu for Al and vice versa, was placed at an angle of 15° with respect to the beam axis. During the laser-matter interaction, the targets absorbed thermal energy within the thermal region depth of 4.7 (1.1) nm, yielding an ablated skin depth of 6.7 (4.2) nm. The surface morphology of the exposed targets was studied by analyzing SEM micrographs obtained using a ZEISS SUPRA 35 VP. The obtained results are explained on the basis of different sputtering/ablation mechanisms. Comparatively severe damage forming a bigger crater is seen on the Al target surface in contrast to the crater on the Cu surface. This observation is correlated with the blustering effect and/or debris formation. Energy dispersive spectroscopy (EDX) of the substrates yielded the deposition of micrometric grain-size particles.  相似文献   

10.
A cavity processed by a tightly focused femtosecond laser pulse is surrounded by a ring-shaped protrusion, debris, and small droplets. In order to reduce these undesired damages, we propose processing with a coating of transparent material on a target material. PMMA (poly-methyl methacrylate) with the thickness that its surface is not ablated by a single pulse irradiation reduces dissolution and vaporization caused by the interaction between a high-density hot vapor plume and the target material. Furthermore, the material at the target surface does not escape freely due to the coating layer. As a result, a submicrometer-sized cavity is produced with a reduction of debris and a smaller thermal-destruction area. PACS 44.10.+i; 61.80.Ba; 79.20.Ds  相似文献   

11.
The synthesis by pulsed laser deposition of ZnO thin films with a Nd:YAG laser system delivering pulses of 40 ps @ 532 nm is reported. The laser beam irradiated the target placed inside a vacuum chamber evacuated down to 1.33×10−1 Pa. The incident laser fluence was of 28 J/cm2 in a spot of 0.1 mm2. The ablated material was collected onto double face polished (111) Si or quartz wafers placed parallel at a separation distance of 7 mm. The AFM, SEM, UV-Vis, FT-IR and absorption ellipsometry results indicated that we obtained pure ZnO films with a rather uniform surface, having an average roughness of 37 nm. We observed by SEM that particulates are present on ZnO film surface or embedded into bulk. Their density and dimension were intermediary between particulates observed on similar structures deposited with fs or ns laser pulses. We noticed that the density of the particulates is increasing while their average size is decreasing when passing from ns to ps and fs laser pulses. The average transmission in the UV-Vis spectral region was found to be higher than 85%.  相似文献   

12.
In this paper we report the results of an investigation into surface deformation caused by thermal effects during excimer laser ablation of polyimide. Obvious surface deformation around hole entrances was observed during the experiment. The surface topology and cross section of the ablated holes were analyzed using topography measurement tool and scanning electron microscopy. It was shown that a micro-hump of 17 to 150 nm in height and 1 to 3 μm in width was formed above the level of the unablated surface. The deformed surface showed rough and color-changed characteristics. An optical diffraction model was employed to explain the cause of this kind of deformation. It was found that the ablating and heating by a near- and under-threshold laser beam became a thermal effect in polyimide material ablation, which was contributed to by a diffraction effect of the optical projection system. Received: 9 October 2001 / Accepted: 17 October 2001 / Published online: 23 January 2002  相似文献   

13.
Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.  相似文献   

14.
The effects of direct UV laser processing on single crystal SiC in ambient air were investigated by cross-sectional transmission electron microscopy, Auger electron spectroscopy, and measurements of the electrical resistance using the transfer length method (TLM). Scanning electron microscopy was applied to study the morphology and dimensions of the laser-treated regions. After laser processing using a nanosecond pulsed solid-state laser the debris consisting of silicon oxide was removed by etching in buffered hydrofluoric acid. A layer of resolidified material remains at the surface indicating the thermal impact of the laser process. The Si/C ratio is significantly disturbed at the surface of the resolidified layer and approaches unity in a depth of several tens of nanometers. A privileged oxidation of carbon leaves elementary resolidified silicon at the surface, where nanocrystalline silicon was detected. Oxygen and nitrogen were detected near the surface down to a depth of some tens of nanometers. A conductive surface film is formed, which is attributed to the thermal impact causing the formation of the silicon–rich surface layer and the incorporation of nitrogen as dopant. No indications for microcrack or defect formation were found beneath the layer of resolidified material.  相似文献   

15.
Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.  相似文献   

16.
A sealing cap had been proposed as an output device for hollow optical fibers in delivering laser light underwater. Properties of sealing cap were experimentally discussed when used in ablation on soft tissue for Er:YAG laser. A self-cleaning effect of the sealing cap was observed when various targets were used for different laser light power. Debris from pork fat formed a uniform oil layer on the output surface of the cap, and the oil layer is relatively transparent in Er:YAG laser light wavelength band. When the target was pork muscle, almost no debris could attach on the surface of the cap. The self-cleaning effect was more obvious when ablation was conducted underwater because of the protection of the water film between the target and the cap's surface.  相似文献   

17.
Nano-sized water-crown like structure in array was firstly generated on metallic thin film by interfering femtosecond laser processing. We named the structure as “nanocrown”. Ridges are standing on the edge of each ablated hole. The shapes of ridges are spike, nano-waterdrop and bead on column. The radius of the top of a spike was just 7 nm, which is far smaller than that of nanobump generated in the previous work. The self-rising in liquidly process result in the generation of mesoscopic nanostructure with the size between nanohorn or nanotube and micron structures processed by machining or lithography. This is a new surface modification technique in top-down technology.  相似文献   

18.
We present surface micro-modifications of bariumalumoborosilicate glasses with a high transformation temperature near 700 °C. Laser processing of the glass substrate was realized by using ultra-short laser pulses at 800 nm. The morphological conversion of the laser-treated surfaces was characterized by scanning force microscopy and nano-indentation. A hardness increase by at least a factor of six on the laser ablation crater edge relative to illuminated non- ablated areas shows that the material in the crater walls underwent drastic morphological and mechanical changes. In this heat- and shock-affected zone, the material became more elastic as a result of increased stress.  相似文献   

19.
The technique of forming mesotetraphenylporphyrin microstructures on the quartz substrate surface by laser-induced forward transfer from a target was developed. The target was a transparent substrate with a thin titanium coating onto which five mesotetraphenylporphyrin layers were deposited by the Langmuir-Schaefer method. The target was irradiated with single 500-ps pulses through a transparent substrate, which causes nondestructive thermal deformation of a metal film, resulting in efficient porphyrin emission from the target. The effect of the titanium film thickness and the laser emission wavelength on the transfer process was studied. An analysis of the optical absorption and fluorescence spectra of obtained surface microstructures suggests that the material structure is retained during laser transfer.  相似文献   

20.
Through-wafer vertical electrical interconnects (vias) with diameters varied from 15 to 80 μm were formed on Si substrates using a UV diode-pumped solid state laser (355 nm). Micro-Raman spectroscopy was employed for the investigation of stress and structural changes induced in silicon within the heat-affected zone due to laser machining. A maximum stress of ∼300 MPa, as a result of laser drilling, was observed close to the via edge. It was found that the stress decays within a distance of 1-3 μm from the via’s side-wall and that the laser machining did not lead to the formation of amorphous silicon around the via structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号