首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
量子级联激光器是一种新型的红外相干光源。利用量子理论与带隙工程,量子级联激光器可实现3 μm到100 μm波长范围内的任意输出波长。由于大多数气体分子的特征光谱都集中在中红外波段,而中红外量子级联激光器具有功率高、线宽窄、扫描速度快等独特的优点,因此,基于量子级联激光器的红外光谱技术已成为气体检测技术的研究热点。尤其是,近年来室温激光器性能得到不断的完善,输出功率和电光转换效率得到了极大的提高,这在很大程度上推动了红外激光光谱技术的迅速发展。本文根据工作原理,分别介绍了基于直接吸收谱检测、相位调制光谱检测、光声调制光谱检测和法拉第旋光效应光谱检测的量子级联激光器红外光谱检测技术,并对其实现方法和应用情况进行了介绍。  相似文献   

2.
We used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon increasing the amplitude of the THz input power, which indicates that the QCL is operating in an injection seeded regime.  相似文献   

3.
基于量子级联激光器的气体检测系统的发展与应用   总被引:2,自引:0,他引:2  
量子级联激光器(QCLs)的快速、灵敏和选择性气体检测等独特优点,使其成为2.5~25μm波长范围内中红外气体检测的理想光源。中红外QCLs在气体检测方面的应用已成为世界各国的研究焦点。尤其是在大气环境监测、太空探索和反恐防恐等领域的应用表现出了其他红外检测系统无可比拟的优势。该文重点介绍了基于量子级联激光器的气体检测系统工作原理、应用及发展趋势。  相似文献   

4.
Compact laser sources operating in mid infrared spectral region with stable emission are important for applications in spectroscopy and wireless communication. Quantum cascade lasers (QCL) are unique semiconductor sources covering mid infrared frequency range. Based on intersubband transitions, the carrier lifetime of these sources is in the ps range. For this reason their frequency response to direct modulation is expected to overcome the limits of standard semiconductor lasers. In this work injection locking of the roundtrip frequency of a QCL emitting at 9 μm is reported. Inter modes laser frequency separation is stabilized and controlled by an external microwave source. Designing an optical waveguide embedded in a microstrip line a flat frequency response to direct modulation up to 14 GHz is presented. Injection locking over MHz frequency range at 13.7 GHz is demonstrated. Numerical solutions of injection locking theory are discussed and presented as tool to describe experimental results.  相似文献   

5.
We report spectral linewidth measurements of a 9.1-microm distributed-feedback quantum cascade laser (QCL). The free-running QCL beam was mixed with a waveguide isotopic C18O2 laser onto a high-speed HgCdTe photomixer, and beat notes were recorded from a radio-frequency spectral analyzer. Beating was performed at two operating conditions, first near the QCL laser threshold (beating with the C18O2 R10 line) and then at a high injection current (beating with the C18O2 R8 line). Overall, beat note widths of 1.3-6.5 MHz were observed, which proves that a free-running QCL can have a short-term spectral width near 1 MHz.  相似文献   

6.
Joly  L.  Zéninari  V.  Decarpenterie  T.  Cousin  J.  Grouiez  B.  Mammez  D.  Durry  G.  Carras  M.  Marcadet  X.  Parvitte  B. 《Laser Physics》2011,21(4):805-812
Mid infra-red absorption spectrometry based on continuous-wave distributed feedback (DFB) quantum cascade laser (QCL) is more and more widely used for trace gas detection and pollution monitoring. The main advantages of this technique are high sensitivity, high selectivity and a potential for extreme compactness. Various examples of trace gas detection for atmospheric detection will be presented in this paper. Commercial QCLs available on the shelves were first implemented. A cryogenic QCL emitting at 6.7 μm was used to demonstrate the detection of water vapor and its isotopes. A room-temperature QCL was then used to simultaneously detect methane and nitrous oxide at 7.9 μm. Recently, we have developed a room-temperature top grating DFB QCL designed around 4.5 μm for the demonstration of N2O detection in the ppb range. Atmospheric applications of these spectrometers will be presented. The improvements of QCL performances make it now possible to develop instruments that are more and more compact and therefore compatible with in situ applications.  相似文献   

7.
Betz AL  Boreiko RT  Williams BS  Kumar S  Hu Q  Reno JL 《Optics letters》2005,30(14):1837-1839
We have locked the frequency of a 3 THz quantum cascade laser (QCL) to that of a far-infrared gas laser with a tunable microwave offset frequency. The locked QCL line shape is essentially Gaussian, with linewidths of 65 and 141 kHz at the -3 and -10 dB levels, respectively. The lock condition can be maintained indefinitely, without requiring temperature or bias current regulation of the QCL other than that provided by the lock error signal. The result demonstrates that a terahertz QCL can be frequency controlled with 1-part-in-10(8) accuracy, which is a factor of 100 better than that needed for a local oscillator in a heterodyne receiver for atmospheric and astronomic spectroscopy.  相似文献   

8.
We report what we believe to be the first absolute frequency measurement performed using a quantum-cascade laser (QCL) referenced to an optical frequency comb synthesizer (OFCS). A QCL at 4.43 microm has been used for producing near-infrared radiation at 858 nm by means of sum-frequency generation with a Nd:YAG source in a periodically poled lithium niobate nonlinear crystal. The absolute frequency of the QCL source has been measured by detecting the beat note between the sum frequency and a diode laser at the same wavelength, while both the Nd:YAG and the diode laser were referenced to the OFCS. Doppler-broadened line profiles of (13)CO(2) molecular transitions have been recorded with such an absolute frequency reference.  相似文献   

9.
周康  黎华  万文坚  李子平  曹俊诚 《物理学报》2019,68(10):109501-109501
群速度色散会限制太赫兹量子级联激光器频率梳的稳定以及频谱宽度.对于太赫兹量子级联激光器频率梳,其色散主要由器件增益、波导损耗、材料损耗引起.研究基于4.2 THz量子级联激光器双面金属波导结构,通过建立德鲁德模型,利用有限元法计算了激光器的波导损耗;器件未钳制的增益由费米黄金定则计算得到,结合增益钳制效应,计算了器件子带电子跃迁吸收以及镜面损耗,得到了器件钳制后的增益;利用Kramers-Kronig关系得到了器件的增益、波导损耗、材料损耗引起的色散,结果表明器件的激射区域存在非常严重的色散(–8×10~5—8×10~5 fs~2/mm).同时,计算了一种基于Gires-Tournois干涉仪结构的色散,结果表明,该结构的色散具有周期性,可以用于太赫兹量子级联激光器的色散补偿.  相似文献   

10.
We demonstrate terahertz (THz) frequency imaging using a single quantum cascade laser (QCL) device for both generation and sensing of THz radiation. Detection is achieved by utilizing the effect of self-mixing in the THz QCL, and, specifically, by monitoring perturbations to the voltage across the QCL, induced by light reflected from an external object back into the laser cavity. Self-mixing imaging offers high sensitivity, a potentially fast response, and a simple, compact optical design, and we show that it can be used to obtain high-resolution reflection images of exemplar structures.  相似文献   

11.
量子级联激光器调制特性的电路模拟   总被引:2,自引:1,他引:1  
陈贵楚  范广涵  陈练辉 《光学学报》2004,24(10):344-1348
量子级联激光器(QCL)是波长范围在中远红外的一类新型激光器,到目前为此,对于它的脉冲响应及调制响应等动态特性了解并不是很深入,为此以贝尔实验室在1994年发明的量子级联激光器器件模型为基础,通过分析量子级联激光器中的电子在多量子阱间输运及跃迁的单极行为,得到它的速率方程。以此为基础,通过用电路元素对方程进行改造,建立起其相应的等效电路模型,利用PSPICE电路模拟软件进行模拟仿真,得到了它的调制响应特性,对可能影响其调制特性的一些因素如各阱之间的弛豫时间进行了讨论,并与其它类型激光器作了比较,发现量子级联激光器的动态性能并不优良,而这一点应缘于其独特的激射能级结构。  相似文献   

12.
Cholesteryl esters are the main components of atherosclerotic plaques, and they have an absorption peak at the wavelength of 5.75 µm. To realize less-invasive ablation of the atherosclerotic plaques using a quasi-continuous wave (quasi-CW) quantum cascade laser (QCL), the thermal effects on normal vessels must be reduced. In this study, we attempted to reduce the thermal effects by controlling the pulse structure. The irradiation effects on rabbit atherosclerotic aortas using macro pulse irradiation (irradiation of pulses at intervals) and conventional quasi-CW irradiation were compared. The macro pulse width and the macro pulse interval were determined based on the thermal relaxation time of atherosclerotic and normal aortas in the oscillation wavelength of the QCL. The ablation depth increased and the coagulation width decreased using macro pulse irradiation. Moreover, difference in ablation depth between the atherosclerotic and normal rabbit aortas using macro pulse irradiation was confirmed. Therefore, the QCL in the 5.7-µm wavelength range with controlling the pulse structure was effective for less-invasive laser angioplasty.  相似文献   

13.
We report the accurate and precise measurement of nitric oxide (NO) in automotive exhaust gas by cavity ring-down spectroscopy (CRDS) using a thermoelectrically cooled, pulsed quantum cascade laser (QCL) as a light source. A mid-infrared QCL with a 5.26 μm wavelength was used to detect fundamental vibrational transitions of NO. An effective optical path length of 2.1 km was achieved in a 50 cm long cell using high-reflectivity mirrors. In combination with a particle filter and a membrane gas dryer, stable and sensitive measurement of NO in exhaust gas was achieved for more than 30 minutes with a time resolution of 1 s. The results of this work indicate that a laser based NO sensor can be used to measure NO in exhaust gas over a dynamic range of three orders of magnitude.  相似文献   

14.
An external cavity quantum cascade laser(QCL)array with a wide tuning range and high output power is presented.The coherent QCL array combined with a diffraction grating and gold mirror is tuned in the Littrow configuration.Taking advantage of the single-lobed fundamental supermode far-field pattern,the tuning capability of 30.6 cm~(-1)is achieved with a fixed injected current of 3.5 A at room temperature.Single-mode emission can be observed in the entire process.The maximum single-mode output power of the external cavity setup is as high as 25 mW and is essential in real applications.  相似文献   

15.
We demonstrate a wireless transmission link at 3.9 THz over a distance of 0.5 m by employing a terahertz (Hz) quantum-cascade laser (QCL) and a THz quantum-well photodetector (QWP). We make direct voltage modulation of the THz QCL and use a spectral-matched THz QWP to detect the modulated THz light from the laser. The small signal model and a direct voltage modulation scheme of the laser are presented. A square wave up to 30 MHz is added to the laser and detected by the THz detector. The bandwidth limit of the wireless link is also discussed.  相似文献   

16.
Quantum cascade lasers (QCLs) have attracted considerable interest as an alternative tuneable narrow bandwidth light source in the mid-infrared spectral range for chemical sensing. Pulsed QCL spectrometers are often used with short laser pulses and a bias current ramp similar to diode laser spectroscopy. Artefacts in the recorded spectra such as disturbed line shapes or underestimated absorption coefficients have been reported. A detailed time-resolved high-bandwidth analysis of individual pulses during a laser sweep has been performed. Quantitative results for CH4 absorption features around 1347 cm−1 (7.42 μm) fell short of the expected values for reasonable operating conditions of the QCL. The origin of the artefacts using short pulses was identified to be partly of the same nature as in the case of long laser pulses. A complex combination with the tuning principle was found, leading to an apparently increased instrumental broadening (effective line width) and underestimated concentrations at low-pressure conditions.  相似文献   

17.
We report the heterodyne detection and phase locking of a 2.5?THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10?mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80?dB of signal-to-noise ratio in a bandwidth of 1?Hz.  相似文献   

18.
We identified conditions for room‐temperature operation of terahertz quantum cascade lasers (THz QCLs) where variable barrier heights are used on ZnSe/Zn1–xMgx Se material systems. The THz QCL devices are based on three‐level two‐well design schemes. The THz QCL lasers with alternating quantum barriers with different heights were compared with THz QCL laser structures with fixed quantum barrier heights. It is found that the THz QCL device with novel design employing variable barrier heights achieved the terahertz emission of about 1.45 THz at room‐temperature (300 K), and has improved laser performance due to the suppression of thermally activated carrier leakage via higher‐energy parasitic levels. Thus, THz QCL devices employing the design with variable barrier heights may lead to future improvements of the operating temperature and performance of THz QCL lasers. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

19.
黎华  韩英军  谭智勇  张戎  曹俊诚 《物理学报》2010,59(3):2169-2172
采用气态源分子束外延设备生长了GaAs/AlGaAs束缚态到连续态跃迁结构的太赫兹(THz)量子级联激光器(QCL)有源区结构,研究了半绝缘等离子体波导THz QCL的器件工艺,采用远红外傅里叶变换光谱仪以及探测器测量了器件的电光特性.器件激射频率为32 THz,10 K下的阈值电流密度为275 A/cm2. 关键词: 太赫兹 量子级联激光器 波导 器件工艺  相似文献   

20.
Huan Wang 《中国物理 B》2021,30(12):124202-124202
We demonstrate a broad gain, continuous-wave (CW) operation InP-based quantum cascade laser (QCL) emitting at 11.8 μm with a modified dual-upper-state (DAU) and diagonal transition active region design. A 3 mm cavity length, 16.5 μm average ridge wide QCL with high-reflection (HR) coatings demonstrates a maximum peak power of 1.07 W at 283 K and CW output power of 60 mW at 293 K. The device also shows a broad and dual-frequency lasing spectrum in pulsed mode and a maximum average power of 258.6 mW at 283 K. Moreover, the full width at half maximum (FWHM) of the electroluminescent spectrum measured at subthreshold current is 2.37 μm, which indicates a broad gain spectrum of the materials. The tuning range of 1.38 μm is obtained by a grating-coupled external cavity (EC) Littrow configuration, which is beneficial for gas detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号