首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translational movement of the macrocycle in two structurally similar bistable [2]rotaxanes, which is induced by a four-step electrochemical process in solution, has been investigated by using a methodology developed in the preceding article (Chem. Eur. J. 2008, 14, 1107-1116). Both [2]rotaxanes contain a crown ether that can be accommodated by either of two interconnected viologen recognition sites. These sites are substantially different in terms of their affinity towards the crown ether and they possess considerably different electrochemical reduction potentials. The two [2]rotaxanes differ in the length and the rigidity of a bridge that links these sites. A combination of molecular mechanics modelling and NOE spectroscopy data provides information about the conformations of both [2]rotaxanes in the parent oxidation state when the crown ether exclusively populates the strong recognition site. To determine the population of the recognition sites at subsequent stages of reduction, a paramagnetic NMR technique and cyclic voltammetry were used. The key finding is that the flexibility of the connecting bridge element between the recognition sites interferes with shuttling of the crown ether in [2]rotaxanes. It can be demonstrated that the more flexible trimethylene bridge is folded, thus limiting the propensity of the crown ether to shuttle. Consequently, the crown ether populates the original site even in the second reduced state of the flexible [2]rotaxane. On the contrary, in the [2]rotaxane in which two viologen sites are connected by a larger and more rigid p-terphenylene bridge, the predominant location of the crown ether at the weak recognition site is achieved after just one single electron reduction.  相似文献   

2.
This paper reports a novel methodology for the conformational analysis of [2]rotaxanes. It combines NMR spectroscopic (COSY, NOESY and the recently reported paramagnetic line-broadening and suppression technique) and electrochemical techniques to enable a quantitative analysis of the co-conformations of interlocked molecules and the conformations of their components. This methodology was used to study a model [2]rotaxane in solution. This [2]rotaxane consists of an axle that incorporates an electron-poor, doubly positively charged viologen that threads an electron-rich crown ether. It has been shown that the axle of the [2]rotaxane in its dicationic state adopts a folded conformation in solution and the crown ether is localised at the viologen moiety. Following a one-electron reduction of viologen, the paramagnetic radical cation of the [2]rotaxane retains its folded conformation in solution. The data also demonstrate that in the radical cation the crown ether remains localised at the viologen, despite its reduced affinity for the singly reduced viologen. The combined quantitative NMR spectroscopic and electrochemical characterisation of the electromechanical function of the model [2]rotaxane in solution provides an important reference point for the study of switching in structurally related bistable [2]rotaxanes, which is the subject of the second part of this work.  相似文献   

3.
A rotaxane consisting of a crown ether wheel and a secondary ammonium salt axle, on which a neopentyl-type end-cap was placed close to the ammonium moiety, was prepared. When the rotaxane was treated by excess triethylamine, the wheel component thermodynamically moved over the proximate neopentyl group to deconstruct the interlocked structure. The wheel component in the rotaxane, however, quantitatively moved against the proximate end-cap by the action of trifluoroacetic anhydride in the presence of excess triethylamine. This motion, which was driven by the simple one-shot acylation reaction, can be referred as the active transport. When the distant end-cap is of the neopentyl-type, the axle can be thermally dethreaded from the distant end-cap after the acylative transport. The series of the wheel movement controlled by the neopentyl group can be the basic motion of the unidirectional linear molecular motor.  相似文献   

4.
A crown ether/amine‐type [2]rotaxane was synthesized and utilized as a probe for the detection of acids and anions. The addition of acids to the amine‐type [2]rotaxane solution generated corresponding crown ether/ammonium‐type [2]rotaxanes, which were purified by silica gel column chromatography as ammonium salts. The isolated yields of the [2]rotaxanes, possessing a variety of anions, depended on the acidity and polarity of the counter anions. The behaviours of the ammonium‐type [2]rotaxanes on thin‐layer chromatography (TLC) silica gel reflected the properties of the counter anions. The treatment of the amine‐type [2]rotaxane with acids afforded the corresponding ammonium‐type [2]rotaxanes bearing several different anions. The ammonium‐type [2]rotaxanes behaved similarly to the purified [2]rotaxanes on the TLC silica gel. Furthermore, we succeeded in the analysis of anions using mixtures of the amine‐type [2]rotaxane and salts in an appropriate solvent. We demonstrated the detection of anions by the combination of TLC and the utilization of the [2]rotaxane probe.  相似文献   

5.
A fifteen-year riddle has been settled: neutralization, the most popular chemical event, of a crown ether/sec-ammonium salt-type rotaxane has been achieved and a completely nonionic crown ether/sec-amine-type rotaxane isolated. A [2]rotaxane was prepared as a typical substrate from a mixture of dibenzo[24]crown-8 ether (DB24C8) and sec-ammonium hexafluorophosphate (PF(6)) with a terminal hydroxy group through end-capping with 3,5-dimethylbenzoic anhydride in the presence of tributylphosphane as a catalyst in 90% yield. A couple of approaches to the neutralization of the ammonium rotaxane were investigated to isolate the free sec-amine-type rotaxane by decreasing the degree of thermodynamic and kinetic stabilities. One approach was the counteranion-exchange method in which the soft counterion PF(6)(-) was replaced with the fluoride anion by mixing with tetrabutylammonium fluoride, thus decreasing the cationic character of the ammonium moiety. Subsequent simple washing with a base allowed us to isolate the free sec-amine-type rotaxane in a quantitative yield. The other approach was a synthesis based on a protection/deprotection protocol. The acylation of the sec-ammonium moiety with 2,2,2-trichloroethyl chloroformate gave an N-carbamated rotaxane that could be deprotected by treating with zinc in acetic acid to afford the corresponding free sec-amine-type rotaxane in a quantitative yield. The structure of the free sec-amine-type rotaxane was fully confirmed by spectral and analytical data. The generality of the counteranion-exchange method was also confirmed through the neutralization of a bisammonium-type [3]rotaxane. The mechanism was studied from the proposed potential-energy diagram of the rotaxanes with special emphasis on the role of the PF(6)(-) counterion.  相似文献   

6.
The synthesis and characterization of a series of hybrid organic-inorganic [2]rotaxanes is described. The ring components are heterometallic octa- ([Cr(7)MF(8)(O(2)C(t)Bu)(16)]; M = Co, Ni, Fe, Mn, Cu, Zn, and Cd) nuclear cages in which the metal centers are bridged by fluoride and pivalate ((t)BuCO(2)(-)) anions; the thread components feature dialkylammonium units that template the formation of the heterometallic rings about the axle to form the interlocked structures in up to 92% yield in conventional macrocyclization or one-pot 'stoppering-plus-macrocyclization' strategies. The presence in the reaction mixture of additives (secondary or tertiary amines or quaternary ammonium salts), and the nature of the stoppering groups (3,5-(t)Bu(2)C(6)H(3)CO(2)- or (t)BuCONH-), can have a significant effect on the rotaxane yield. The X-ray crystal structures of 11 different [2]rotaxanes, a pseudorotaxane, and a two-station molecular shuttle show two distinct types of intercomponent hydrogen bond motifs between the ammonium groups of the organic thread and the fluoride groups of the inorganic ring. The different hydrogen bonding motifs account for the very different rates of dynamics observed for the heterometallic ring on the thread (shuttling slow; rotation fast).  相似文献   

7.
This article reviews our recent studies on structure and properties of rotaxanes and pseudorotaxanes with Fe-, Pd- and Pt-containing complexes as the axle component. Electrochemical oxidation of ferrocenylmethylamine in the presence of a hydrogen radical precursor induces formal protonation of the amino group and produces a pseudorotaxane of the resulting ammonium species with a crown ether. Single crystals of the ferrocene-containing pseudorotaxane undergo a thermal crystalline phase transition accompanied by changes in the optical properties of the crystals. X-Ray crystallographic studies of the low- and high-temperature phases revealed different intermolecular interactions and orientations of the aromatic rings in the crystalline state depending on the temperature. End-capping of the ferrocene-containing [2]pseudorotaxane using a cross-metathesis reaction yields [2]rotaxane under mild conditions. A rotaxane having a platinum-carboxylate complex as its axle is converted into related organic and inorganic rotaxanes by partial dissociation of the Pt-O bond. An N-alkylbipyridinium forms [3]pseudorotaxane with alpha-cyclodextrin (alpha-CD), and it reacts with platinum and palladium complexes to form the corresponding [5]rotaxanes containing four alpha-cyclodextrin moieties. Complexes without alpha-CD components form micelles in aqueous solution, while the addition of alpha-CD causes degradation of the micelles and the formation of rotaxanes.  相似文献   

8.
[reaction: see text] In this Letter, we present an easy method for the synthesis of rotaxanes using a novel DCC-[2]rotaxane. The DCC-[2]rotaxane is composed of dibenzo-24-crown-8 ether, an amino acid tether, and di-tert-butyl phenyl rings as blocking groups. It is relatively stable and can be purified by column chromatography. A series of model rotaxanes were obtained in good yields by condensing the DCC-[2]rotaxanes with N-(2-aminoethyl)-3,5-di-tert-butylbenzylamide in acetonitrile and chloroform.  相似文献   

9.
Four mononuclear metallomacrocycles with identical cavities but different transition metals (Os(VI), Pd(II), Pt(II), and Re(I)) were prepared. With these metallomacrocycles, the corresponding rotaxanes 2-Os, 2-Pd, 2-Pt, and 2-Re were self-assembled by hydrogen-bonding interactions. The kinetic stabilities of the rotaxanes were determined quantitatively and compared with each other by (1)H NMR spectroscopic techniques, including two-dimensional exchange spectroscopy (2D-EXSY) experiments. The activation free energies (DeltaG( not equal )) for the exchange between the rotaxanes 2-Os, 2-Pd and 2-Pt and their free components were determined to be 15.5, 16.0, and 16.4 kcal mol(-1), respectively. These magnitudes imply that the rotaxanes 2-Os, 2-Pd and 2-Pt are kinetically labile at room temperature and exist only as equilibrium mixtures with free components in solution. In contrast, the rotaxane 2-Re is kinetically stable enough to be isolated in pure form by silica gel chromatography under ordinary laboratory conditions. However, at higher temperatures (>60 degrees C) 2-Re was slowly disassembled into its components until the equilibrium was established. The rate constants were measured at three different temperatures, and the Eyring plot yielded the activation enthalpy DeltaH(not equal)=35 kcal mol(-1) and the activation entropy DeltaS(not equal)=27 eu for the disassembly of the rotaxane 2-Re in Cl(2)CDCDCl(2). These thermodynamic parameters gave the activation free energy DeltaG(not equal)(off)=27.1 kcal mol(-1) at 25 degrees C. Consequently, 2-Re is one example of a novel metallomacrocycle-based rotaxane that contains a coordination bond with enough strength to allow both for isolation in pure form around room temperature and for self-assembly at higher temperatures.  相似文献   

10.
Two rotaxanes with benzyl ether axles and tetralactam wheels were synthesized through an anion template effect. They carry naphthalene chromophores attached to the stopper groups and a pyrene chromophore attached to the wheel. The difference between the two rotaxanes is represented by the connecting unit of the naphthyl chromophore to the rotaxane axle: a triazole or an alkynyl group. Both rotaxanes exhibit excellent light-harvesting properties: excitation of the naphthalene chromophores is followed by energy transfer to the pyrene unit with efficiency higher than 90% in both cases. This represents an example of light-harvesting function among chromophores belonging to mechanically interlocked components, that is, the axle and the wheel of the rotaxanes.  相似文献   

11.
In pursuit of a neutral bistable [2]rotaxane made up of two tetraarylmethane stoppers--both carrying one isopropyl and two tert-butyl groups located at the para positions on each of three of the four aryl rings--known to permit the slippage of the pi-electron-donating 1,5-dinaphtho[38]crown-10 (1/5DNP38C10) at the thermodynamic instigation of pi-electron-accepting recognition sites, in this case, pyromellitic diimide (PmI) and 1,4,5,8-naphthalenetetracarboxylate diimide (NpI) units separated from each other along the rod section of the rotaxane's dumbbell component, and from the para positions of the fourth aryl group of the two stoppers by pentamethylene chains, a modular approach was employed in the synthesis of the dumbbell-shaped compound NpPmD, as well as of its two degenerate counterparts, one (PmPmD) which contains two PmI units and the other (NpNpD) which contains two NpI units. The bistable [2]rotaxane NpPmR, as well as its two degenerate analogues PmPmR and NpNpR, were obtained from the corresponding dumbbell-shaped compounds NpPmD, PmPmD, and NpNpD and 1/5DNP38C10 by slippage. Dynamic 1H NMR spectroscopy in CD2Cl2 revealed that shuttling of the 1/5DNP38C10 ring occurs in NpNpR and PmPmR, with activation barriers of 277 K of 14.0 and 10.9 kcal mol(-1), respectively, reflecting a much more pronounced donor-acceptor stabilizing interaction involving the NpI units over the PmI ones. The photophysical and electrochemical properties of the three neutral [2]rotaxanes and their dumbbell-shaped precursors have also been investigated in CH2Cl2. Interactions between 1/5DNP38C10 and PmI and NpI units located within the rod section of the dumbbell components of the [2]rotaxane give rise to the appearance of charge-transfer bands, the energies of which correlate with the electron-accepting properties of the two diimide moieties. Comparison between the positions of the visible absorption bands in the three [2]rotaxanes shows that, in NpPmR, the major translational isomer is the one in which 1/5DNP38C10 encircles the NpI unit. Correlations of the reduction potentials for all the compounds studied confirm that, in this non-degenerate [2]rotaxane, one of the translational isomers predominates. Furthermore, after deactivation of the NpI unit by one-electron reduction, the 1/5DNP38C10 macrocycle moves to the PmI unit. Li+ ions have been found to strengthen the interaction between the electron-donating crown ether and the electron-accepting diimide units, particularly the PmI one. Titration experiments show that two Li+ ions are involved in the strengthening of the donor-acceptor interaction. Addition of Li+ ions to NpPmR induces the 1/5DNP38C10 macrocycle to move from the NpI to the PmI unit. The Li+-ion-promoted switching of NpPmR in a 4:1 mixture of CD2Cl2 and CD3COCD3 has also been shown by 1H NMR spectroscopy to involve the mechanical movement of the 1/5DNP38C10 macrocycle from the NpI to the PmI unit, a process that can be reversed by adding an excess of [12]crown-4 to sequester the Li+ ions.  相似文献   

12.
The conformational preference of a [2]rotaxane system has been examined by molecular dynamics simulations. The rotaxane wheel consists of two bridged binding components: a cis-dibenzo-18-crown-6 ether and a 1,3-phenyldicarboxamide, and the penetrating axle consists of a central isophthaloyl unit with phenyltrityl capping groups. The influence of solvation on the co-conformation of the [2]rotaxane was evaluated by comparing the conformational flexibility in two solvents: chloroform and dimethyl sulfoxide. Attention was also paid to the effect of cation binding on the dynamical properties of the [2]rotaxane. The conformational stability of the [2]rotaxane was calculated using a MM/PB-SA strategy, and the occurrence of specific motions was examined by essential dynamics analysis. The changes in the co-conformational properties in the two solvents and upon cation binding are discussed in light of the available NMR data. The results indicate that in chloroform solution the [2]rotaxane system exists as a mixture of co-conformational states including some that have hydrogen bonds between axle C=O and wheel NH groups. Analysis of the simulations allow us to hypothesize that the [2]rotaxane's circumrotation motion can occur as the result of a dynamic process that combines a preliminary axle sliding step that breaks these hydrogen bonds and a conformational change in the ester group more distant from the wheel. In contrast, no hydrogen-bonded co-conformation was found in dimethyl sulfoxide, which appears to be due to the preferential formation of hydrogen bonds between the wheel NH groups with solvent molecules. Moreover, the axle experiences notable changes in anisotropic shielding, which would explain why the NMR signals are broadened in this solvent. Insertion of a sodium cation into the crown ether reduces co-conformational flexibility due to an interaction of the axle with the cation. Overall, the results reveal how both solvent and ionic atmosphere can influence the co-conformational preferences of rotaxanes.  相似文献   

13.
Two ferrocenylmethyl ammonium salts were used as axle components of pseudorotaxanes with dibenzo[24]crown‐8. The pseudorotaxane with an alkyne terminal group in the axle component underwent a Cu‐catalyzed Huisgen coupling reaction (click reaction) with an alkyl azide to afford cationic [2]rotaxanes with a triazole group in the axle molecule. The rotaxane reacted with Ac2O to produce neutral rotaxanes with an amide group in the axle component. Both cationic and neutral rotaxanes were treated with K[PtCl3(CH2?CH2)] to form the PtII‐containing rotaxanes.  相似文献   

14.
A highly rotaxane-selective synthesis via aminolysis of prerotaxanes, which were composed of a phenolic pseudo-crown ether as a ring component and a bulky stopper unit, was developed. The best result was obtained in the case of aminolysis of 3b with 3,5-dimethylbenzylamine which proceeded quantitatively with ca. 100% rotaxane selectivity forming the corresponding rotaxane 5b. The rotaxanes were formed by kinetically controlled attack of the amine from the backside of the ring component of the prerotaxanes.  相似文献   

15.
In this study we synthesized two acid‐/base‐controllable [2]rotaxanes featuring aminodiazobenzene and aminocoumarin units, respectively, as chromophores and dibenzo[24]crown‐8 and dibenzo[25]crown‐8 units, respectively, as their macrocyclic components. Each [2]rotaxane contained N‐alkylarylamine (ammonium) and N,N‐dialkylamine (ammonium) centers as binding sites for their crown ether components. The absorption patterns of the chromophores were dependent on the position of the encircling macrocyclic component and the degree of protonation, with three distinct states (under acidic, neutral, and basic conditions) evident for each [2]rotaxane. The mixed [2]rotaxane system displayed stepwise and independent molecular shuttling behavior based on the degree of protonation of the amino groups in response to both the amount and strength of added acids or bases; as such, the system provided five different absorption signals as outputs that could be read using UV/Vis spectroscopy.  相似文献   

16.
《中国化学》2017,35(7):1050-1056
Crown ether usually plays the role of macrocyclic host in supramolecular chemistry, but here the crown ether is also utilized as the stoppers in rotaxanes. In this work, we designed and synthesized two [3]rotaxanes containing four crown ether components by using an approach of template‐directed clipping reaction, of which, two crown ether components were employed as the macrocyclic hosts to assemble the mechanically interlocked framework while another two crown ether units located on the two ends of ammonium template acting as the stoppering groups of rotaxanes. Their self‐assembling process was monitored by the 1H NMR and one of the single crystal structures of [3]rotaxane was obtained.  相似文献   

17.
A triethylphosphonium group attached to a pyridinium ethane moiety can be used as an axle for the self-assembly of [2]pseudorotaxanes and [2]rotaxanes. Although [2]pseudorotaxane formation is limited due to the bulk of the PR4+ group, [2]rotaxanes can be formed utilising 24-crown-8 ether, benzo-24-crown-8 ether and naphtho-24-crown-8 ether. The synthesis of these [2]rotaxanes and the X-ray structure of the [2]rotaxane containing a 24-crown-8 ether wheel are described. When the crown ether contains an aromatic group two possible conformational isomers exist; these are identified at low temperature by 1H and 31P NMR spectroscopy.  相似文献   

18.
《化学:亚洲杂志》2017,12(3):372-377
Dibenzo[24]crown‐8 (DB24C8) forms rotaxanes with a linear molecule having a dialkylammonium group and a triazole group as well as with the acetylation product of a cationic axle molecule. The former cationic rotaxane is stabilized by multiple intermolecular hydrogen bonds between the NH2+ and oxyethylene groups. The neutral rotaxane contains the macrocycle in the vicinity of the terminal aryl group. The co‐conformation of both the cationic and neutral rotaxanes can be fixed by coordination of the triazole group of the axle molecule to PtCl2(dmso)2. A 1H NMR spectroscopic study on the thermodynamics of the Pt coordination revealed a larger association constant for the rotaxanes than for the corresponding axle molecules and a larger value for the neutral rotaxane than for the cationic rotaxane.  相似文献   

19.
This Letter describes the formation of pseudo[3]rotaxanes containing calix[4]-bis-crowns, exhibiting a 1,3-alternate conformation and large crown cavities, and secondary ammonium ions. The first and second association constants of pseudo[3]rotaxane formation are moderate (K1 = 175, K2 = 100 M−1) and are higher than that of the corresponding pseudo[2]rotaxane (K = 24 M−1), consisting of a calix[4]-mono-crown and the same secondary ammonium ion.  相似文献   

20.
The synthesis of new [2]- and [3]rotaxanes through Sonogashira coupling has been accomplished in the aim to built oligo(phenyleneethynylene) (OPE) encircled by crown ethers. Optimization of the Sonogashira coupling for the formation of the [2]rotaxane (capping reaction) is presented and the best method has been applied for the synthesis of the longer [3]rotaxane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号