首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

2.
In this article, post-buckling and non-linear bending analysis of functionally graded annular sector plates based on three dimensional theory of elasticity in conjunction with non-linear Green strain tensor is considered. In-plane normal compressive loads have been applied to either radial, circumferential, or all edges of annular sector plates. Material properties are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents while Poisson׳s ratio is assumed to be constant. The governing equations are developed based on the principle of minimum total potential energy and solved based on graded finite element method. Non-linear equilibrium equations are solved based on iterative Newton–Raphson method. The effects of material gradient exponent, different sector angles, thickness ratio, loading condition and two different boundary conditions on the post-buckling behavior of FGM annular sector plates have been investigated. Results denote that due to the stretching–bending coupling effects of the FGMs, the post-buckling behavior of movable simply supported FGM plates is not of the bifurcation-type buckling. Moreover, FGM annular sector plates subjected to uniaxial compression at radial edges show a non-linear bending behavior with unique and stable equilibrium paths following a flattening feature.  相似文献   

3.
In this research work, an exact analytical solution for buckling of functionally graded rectangular plates subjected to non-uniformly distributed in-plane loading acting on two opposite simply supported edges is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the classical plate theory based on exact neutral surface position is employed to derive the governing stability equations. Considering Levy-type solution, the buckling equation reduces to an ordinary differential equation with variable coefficients. An exact analytical solution is obtained for this equation in the form of power series using the method of Frobenius. By considering sufficient terms in power series, the critical buckling load of functionally graded plate with different boundary conditions is determined. The accuracy of presented results is verified by appropriate convergence study, and the results are checked with those available in related literature. Furthermore, the effects of power of functionally graded material, aspect ratio, foundation stiffness coefficients and in-plane loading configuration together with different combinations of boundary conditions on the critical buckling load of functionally graded rectangular thin plate are studied.  相似文献   

4.
基于修正偶应力理论和Kirchhoff板理论,建立了功能梯度微板热力耦合屈曲等几何有限元模型。该模型仅包含一个材料尺度参数,能够描述尺度效应现象,且满足修正偶应力理论的高阶连续性要求。基于虚功原理推导了功能梯度微板热力耦合屈曲等几何有限元方程。通过对板的典型算例分析,讨论了材料尺度参数、边长比及梯度指数对板稳定性的影响。结果表明,本文模型预测的屈曲载荷总是大于宏观理论的结果,即捕捉到了尺度效应现象;随着临界屈曲力的增加,临界屈曲热载荷线性减少;此外,边长比和梯度指数也对微板的稳定性产生一定影响。  相似文献   

5.
Thermal buckling analysis of rectangular functionally graded plates (FGPs) with geometrical imperfections is presented in this paper. The equilibrium, stability, and compatibility equations of an imperfect functionally graded plate are derived using the classical plate theory. It is assumed that the nonhomogeneous mechanical properties of the plate, graded through thickness, are described by a power function of the thickness variable. The plate is assumed to be under three types of thermal loading as uniform temperature rise, nonlinear temperature rise through the thickness, and axial temperature rise. Resulting equations are employed to obtain the closed-form solutions for the critical buckling temperature change of an imperfect FGP. The results are reduced and compared with the results of perfect functionally graded and imperfect isotropic plates.  相似文献   

6.
This study is concerned with the elastic bending problem of a class of annular sectorial plates whose radial edges are simply supported. Exact bending relationships between the Mindlin plate results and the corresponding Kirchhoff plate solutions have been derived based on the concept of load equivalence. These bending relationships facilitate the deduction of thick (Mindlin) plate results from the corresponding classical thin (Kirchhoff) plate solutions, thus bypassing the need to solve the more complicated governing equations of thick plates. The correctness of the relationships is established by solving the bending problem of annular sectorial plates under a uniformly distributed load and comparing the results with existing thick plate solutions.  相似文献   

7.
Free vibration of functionally graded(FG) annular sector plates embedded with two piezoelectric layers is studied with a generalized differential quadrature(GDQ)method. Based on the first-order shear deformation(FSD) plate theory and Hamilton's principle with parameters satisfying Maxwell's electrostatics equation in the piezoelectric layers, governing equations of motion are developed. Both open and closed circuit(shortly connected) boundary conditions on the piezoelectric surfaces, which are respective conditions for sensors and actuators, are accounted for. It is observed that the open circuit condition gives higher natural frequencies than a shortly connected condition. For the simulation of the potential electric function in piezoelectric layers, a sinusoidal function in the transverse direction is considered. It is assumed that properties of the FG material(FGM) change continuously through the thickness according to a power distribution law.The fast rate convergence and accuracy of the GDQ method with a small number of grid points are demonstrated through some numerical examples. With various combinations of free, clamped, and simply supported boundary conditions, the effects of the thicknesses of piezoelectric layers and host plate, power law index of FGMs, and plate geometrical parameters(e.g., angle and radii of annular sector) on the in-plane and out-of-plane natural frequencies for different FG and piezoelectric materials are also studied. Results can be used to predict the behaviors of FG and piezoelectric materials in mechanical systems.  相似文献   

8.
As a first endeavor, the buckling analysis of functionally graded (FG) arbitrary straight-sided quadrilateral plates rested on two-parameter elastic foundation under in-plane loads is presented. The formulation is based on the first order shear deformation theory (FSDT). The material properties are assumed to be graded in the thickness direction. The solution procedure is composed of transforming the governing equations from physical domain to computational domain and then discretization of the spatial derivatives by employing the differential quadrature method (DQM) as an efficient and accurate numerical tool. After studying the convergence of the method, its accuracy is demonstrated by comparing the obtained solutions with the existing results in literature for isotropic skew and FG rectangular plates. Then, the effects of thickness-to-length ratio, elastic foundation parameters, volume fraction index, geometrical shape and the boundary conditions on the critical buckling load parameter of the FG plates are studied.  相似文献   

9.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

10.
Based on the first-order shear deformation plate theory with von Karman non-linearity, the non-linear axisymmetric and asymmetric behavior of functionally graded circular plates under transverse mechanical loading are investigated. Introducing a stress function and a potential function, the governing equations are uncoupled to form equations describing the interior and edge-zone problems of FG plates. This uncoupling is then used to conveniently present an analytical solution for the non-linear asymmetric deformation of an FG circular plate. A perturbation technique, in conjunction with Fourier series method to model the problem asymmetries, is used to obtain the solution for various clamped and simply supported boundary conditions. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified by comparison with the existing results in the literature. The effects of non-linearity, material properties, boundary conditions, and boundary-layer phenomena on various response quantities in a solid circular plate are studied and discussed. It is found that linear analysis is inadequate for analysis of simply supported FG plates which are immovable in radial direction even in the small deflection range. Furthermore, the responses of FG materials under a positive load and a negative load of identical magnitude are not the same. It is observed that the boundary-layer width is approximately equal to the plate thickness with the boundary-layer effect in clamped FG plates being stronger than that in simply supported plates.  相似文献   

11.
Buckling analysis of the functionally graded viscoelastic circular plates has not been carried out so far. In the present paper, a series solution is developed for buckling analysis of radially graded FG viscoelastic circular plates with variable thickness resting on two-parameter elastic foundations, based on Mindlin's plate theory. The complex modulus approach in combination with the elastic-viscoelastic correspondence principle is employed to obtain the solution for various edge conditions. A comprehensive sensitivity analysis is carried out to evaluate effects of various parameters on the buckling load. Results reveal that the viscoelastic behavior of the materials may postpone the buckling occurrence and the stiffness reduction due to the section variations may be compensated by the graded material properties.  相似文献   

12.
Based on the elasto-plastic theory, considering the effect of spherical stress tensor on the elasto-plastic deformation and using the slicing treatment to deal with the plasticity of functionally graded coatings, the elasto-plastic increment constitutive equations of the sandwich plates with functionally graded metal-metal face sheets can be derived. Applying the weak bonded theory to the interfacial constitutive relation and taking into account the geometric nonlinearity, the nonlinear increment differential equilibrium equations of the sandwich plates with functionally graded metal-metal face sheets are obtained by the minimum potential energy principle. The finite difference method and the iterative method are used to obtain the post-buckling path. When the effect of geometrical nonlinearity of the plate is ignored, the elasto-plastic critical buckling load of the sandwich plates with functionally graded metal-metal face sheets can be solved by the Galerkin method and the iterative method. In the numerical examples, the effects of the interface damages, the induced load ratio, the functionally graded index, and the geometry parameters on the elasto-plastic post-buckling path and the elasto-plastic critical buckling load are investigated.  相似文献   

13.
Buckling analysis of the functionally graded viscoelastic circular plates has not been carried out so far. In the present paper, a series solution is developed for buckling analysis of radially graded FG viscoelastic circular plates with variable thickness resting on two-parameter elastic foundations, based on Mindlin's plate theory. The complex modulus approach in combination with the elastic–viscoelastic correspondence principle is employed to obtain the solution for various edge conditions. A comprehensive sensitivity analysis is carried out to evaluate effects of various parameters on the buckling load. Results reveal that the viscoelastic behavior of the materials may postpone the buckling occurrence and the stiffness reduction due to the section variations may be compensated by the graded material properties.  相似文献   

14.
In this research, thermal buckling of circular plates compose of functionally graded material (FGM) is considered. Equilibrium and stability equations of a FGM circular plate under thermal loads are derived, based on the higher order shear deformation plate theory (3rd order plate theory). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations is established. A buckling analysis of a functionally graded circular plate (FGCP) under various types of thermal loads is carried out and the result are given in closed-form solutions. The results are compared with the critical buckling temperature obtained for FGCP based on first order (1st order plate theory) and classical plate theory (0 order plate theory) given in the literature. The study concludes that higher order shear deformation theory accurately predicts the behavior of FGCP, whereas the first order and classical plate theory overestimates buckling temperature.  相似文献   

15.
Free vibration analysis of functionally graded (FG) thin-to-moderately thick annular plates subjected to thermal environment and supported on two-parameter elastic foundation is investigated. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle based on the first order shear deformation theory (FSDT). The initial thermal stresses are obtained by solving the thermoelastic equilibrium equations. Differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic and FG circular and annular plates. The effects of the temperature rise, elastic foundation coefficients, the material graded index and different geometrical parameters on the frequency parameters of the FG annular plates are investigated. The new results can be used as benchmark solutions for future researches.  相似文献   

16.
The sinusoidal shear deformation plate theory, presented in the first part of this paper, is used to study the buckling and free vibration of the simply supported functionally graded sandwich plate. Effects of rotatory inertia are considered. The critical buckling load and the vibration natural frequency are investigated. Some available results for sandwich plates non-symmetric about the mid-plane can be retrieved from the present analysis. The influences of the transverse shear deformation, plate aspect ratio, side-to-thickness ratio and volume fraction distributions are studied. In addition, the effect of the core thickness, relative to the total thickness of the plate, on the critical buckling load and the eigenfrequencies is investigated.  相似文献   

17.
夹层FGM圆柱壳在扭转载荷作用下的弹性稳定性   总被引:1,自引:0,他引:1  
李世荣  王爽 《力学学报》2010,42(6):1172-1179
采用半解析方法研究了两端简支的功能梯度夹层圆柱壳在端部扭转载荷作用下的弹性稳定性.考虑圆柱壳的里外表层为均匀材料,中间层为材料性质沿厚度方向连续变化的功能梯度材料,并且在界面处的材料性质保持连续. 基于Flügge薄壳理论,建立了位移形式的结构静态屈曲控制方程.根据边界条件将位移表示为三角级数形式,获得包含柱壳端部扭转载荷参数的近似线性代数特征值问题,并通过数值方法求得了表征结构失稳特征的临界载荷. 数值结果表明,临界载荷随着半径与厚度比的增加而减小,随着功能梯度中间层的弹性模量的平均值的增加而增加.   相似文献   

18.
An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces. Material properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instantaneous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature, displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two constituents, volume fraction profiles and the two homogenization schemes.  相似文献   

19.
The buckling of an elastic plate with arbitrary shape flush-mounted on a rigid wall and deforming under the action of a uniform tangential load due to an overpassing simple shear flow is considered. Working under the auspices of the theory of elastic instability of plates governed by the linear von Kármán equation, an eigenvalue problem is formulated for the buckled state resulting in a fourth-order partial differential equation with position-dependent coefficients parameterized by the Poisson ratio. The governing equation also describes the deformation of a plate clamped around the edges on a vertical wall and buckling under the action of its own weight. Solutions are computed analytically for a circular plate by applying a Fourier series expansion to derive an infinite system of coupled ordinary differential equations and then implementing orthogonal collocation, and numerically for elliptical and rectangular plates by using a finite-element method. The eigenvalues of the resulting generalized algebraic eigenvalue problem are bifurcation points in the solution space, physically representing critical thresholds of the uniform tangential load above which the plate buckles and wrinkles due to the partially compressive developing stresses. The associated eigenfunctions representing possible modes of deformation are illustrated, and the effect of the Poisson ratio and plate shape is discussed.  相似文献   

20.
In this paper, a size-dependent first-order shear deformable shell model is developed based upon the modified strain gradient theory (MSGT) for the axial buckling analysis of functionally graded (FG) circular cylindrical microshells. It is assumed that the material properties of FG materials, which obey a simple power-law distribution, vary through the thickness direction. The principle of virtual work is utilized to formulate the governing equations and corresponding boundary conditions. Numerical results are presented for the axial buckling of FG circular cylindrical microshells subject to simply-supported end conditions and the effects of material length scale parameter, material property gradient index, length-to-radius ratio and circumferential mode number on the size-dependent critical buckling load are extensively studied. For comparison purpose, the critical buckling loads predicted by modified couple stress theory (MCST) and classical theory (CT) are also presented. Results show that the size effect plays an important role for lower values of dimensionless length scale parameter. Moreover, it is observed that the critical buckling loads obtained based on MSGT are greater than those obtained based on MCST and CT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号