首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new flexible 3D porous metal-organic framework (MOF) with 1D open nanotube,[Co2(μ5-CTAI)(dpe)(H2O)2]n·6n(H2O)(1) (CTA=cyclohexane-1,2,4,5-tetracarboxylic acid,dpe=1,2-di(4-pyridyl) ethylene) has been prepared and structurally characterized.Meanwhile,each 1D nanotubes filled with 1D water chain with dimension of 13.711 × 12.275 2.Compound 1 represents a new example that collapse/deform upon dehydration/hydration and shows adsorb H 2 O selectively over organic solvents.  相似文献   

2.
Novel microporous metal-organic framework material composed of Mn(II) and formate ions displays permanent porosity, high thermal stability, and size-selective gas sorption behavior. The framework is stable enough to maintain single crystallinity after the complete guest removal at 150 degrees C under a reduced pressure. Most importantly, it selectively adsorbs H2 and CO2 but not N2 and other gases with larger kinetic diameters, which appears to be due to the small aperture of the channels. Despite a moderate H2 storage capacity, which is however still higher than that of any zeolite, its H2 surface coverage is one of the highest among the known microporous materials. Thus this new zeolite-like material made of a simple organic building block may find useful applications in gas separation and sensor.  相似文献   

3.
4.
Eu(III) ions have been introduced into a photoactive viologen system to yield a polyrotaxane-like metal-organic framework, which exhibits reversible photochromism and luminescence modulation with a non-destructive readout capability in the solid state.  相似文献   

5.
6.
《中国化学快报》2022,33(8):3726-3732
As a common volatile organic compound, benzene (C6H6) exists in home decoration pollution gas widely, which causes great harm to the environment and human health. Therefore, it is necessary to rationally design advanced materials with high selectivity to detect and capture C6H6. Herein, combined with the d-band center theory and cohesive energy, a new two-dimensional metal-organic framework material, Ni-doped hexaaminobenzene-based coordination polymer (Ni-HAB-CP) is designed, and its application potential as a C6H6 sensor are systematically investigated by using first principles calculation. The result shows that Ni-HAB-CP has a strong adsorption for C6H6 without any additional method. In addition, Ni-HAB-CP can maintain good conductivity before and after adsorption, and C6H6 can be easily desorbed from the surface of Ni-HAB-CP by charge control. Moreover, the I-V curve calculated by Atomistix Toolkit (ATK) reveals that Ni-HAB-CP has high sensitivity and selectivity to C6H6. Hence, Ni-HAB-CP is expected to be used as a potential material for a highly efficient and recyclable C6H6 sensor in the future. The calculation and analysis methods used in this paper could provide a certain theoretical basis and reference for the future research of gas sensors.  相似文献   

7.
A composite metal-organic framework material Ag+/MOF-101 was synthesized and applied to adsorb dibenzothiophene (DBT) from model oils. The loading of Ag+ enhanced the deep adsorptive desulfurization capacity for DBT and significantly weaken the adsorption competitiveness of toluene.  相似文献   

8.
A porous metal-organic framework [Zn(4)O(NTB)(2)].3DEF.EtOH (1), in which (3,6)-connected nets are doubly interpenetrated to generate curved three-dimensional channels, has been prepared. Framework 1 exhibits high permanent porosity (Langmuir surface area, 1121 m(2)/g; pore volume, 0.51 cm(3)/cm(3)), high thermal stability (up to 430 degrees C), high hydrogen adsorption capacity (1.9 wt % at 77 K and 1 atm), selective organic guest binding ability (K(f)()( )(): MeOH > pyridine > benzene > dodecane), and guest-dependent blue luminescence (lambda(max) depending on guest identity). Most interestingly, the framework sustains single crystallinity even at 400 degrees C and 10(-)(5) Torr, and the framework components undergo reversible dynamics, mainly rotational motion, in response to removal and rebinding of the guest molecules.  相似文献   

9.
Gu JZ  Lu WG  Jiang L  Zhou HC  Lu TB 《Inorganic chemistry》2007,46(15):5835-5837
A 3D porous metal-organic framework (MOF) with 1D open channels has been constructed hydrothermally using Zn(II) and a rigid planar ligand IDC(3)- (imidazole-4,5-dicarboxylate). This MOF can adsorb water selectively over organic solvents and can be regenerated and reused. It also represents a rare example of a MOF with open channels that form/collapse reversibly upon hydration/dehydration.  相似文献   

10.
A metal-organic framework (MOF) for reversible alteration of guest molecule adsorption, here carbon dioxide, upon photochemical or thermal treatment has been discovered. An azobenzene functional group, which can switch its conformation upon light irradiation or heat treatment, has been introduced to the organic linker of a MOF. The resulting MOF adsorbs different amount of CO(2) after UV or heat treatment. This remarkable stimuli-responsive adsorption effect has been demonstrated through experiments.  相似文献   

11.
Caging cages: Crystals of a metal-organic framework, MOF-123 [Zn(7) O(2) (NBD)(5) (DMF)(2) ] have a three-dimensional porous structure in which DMF ligands (see picture, pink) protrude into small channels. Removal of these ligands triggers the transformation of this MOF to the doubly interpenetrating form, MOF-246 [Zn(7) O(2) (NBD)(5) ]. Moreover, addition of DMF into MOF-246 triggers reverse transformation to give MOF-123. NBD=2-nitrobenzene-1,4-dicarboxylate.  相似文献   

12.
A 3D porous metal-organic framework [Zn3(ntb)2(EtOH)2]n.4nEtOH (1) that generates 1D channels of honeycomb aperture has been prepared by the solvothermal reaction of Zn(NO3)(2).6 H2O and 4,4',4'-nitrilotrisbenzoic acid (H3NTB) in EtOH at 110 degrees C. Framework 1 exhibits reversible single-crystal-to-single-crystal transformations upon removal and rebinding of the coordinating EtOH as well as the EtOH guest molecules, which give rise to desolvated crystal [Zn3(ntb)2]n (1') and resolvated crystal [Zn3(ntb)2-(EtOH)2]n.4nEtOH (1'). The X-ray structures indicate that 3D host framework is retained during the transformations from 1 to 1' and from 1' to 1', but the coordination geometry of ZnII ions changes from/to trigonal bipyramid to/from tetrahedron, concomitant with the rotational rearrangement of a carboxylate plane of the NTB3- relative to its associated phenyl ring. To retain the single crystal integrity, extensive cooperative motions must exist between the molecular components throughout the crystal. Framework 1' exhibits permanent porosity, thermal stability up to 400 degrees C, and blue luminescence, and high storage capabilities for N2, H2, CO2, and CH4.  相似文献   

13.
Two new three-dimensional Sc(III) metal-organic frameworks {[Sc(3)O(L(1))(3)(H(2)O)(3)]·Cl(0.5)(OH)(0.5)(DMF)(4)(H(2)O)(3)}(∞) (1) (H(2)L(1)=1,4-benzene-dicarboxylic acid) and {[Sc(3)O(L(2))(2)(H(2)O)(3)](OH)(H(2)O)(5)(DMF)}(∞) (2) (H(3)L(2)=1,3,5-tris(4-carboxyphenyl)benzene) have been synthesised and characterised. The structures of both 1 and 2 incorporate the trinuclear trigonal planar [Sc(3)(O)(O(2)CR)(6)] building block featuring three Sc(III) centres joined by a central μ(3)-O(2-) donor. Each Sc(III) centre is further bound by four oxygen donors from four different bridging carboxylate anions, and a molecule of water located trans to the μ(3)-O(2-) donor completes the six coordination at the metal centre. Frameworks 1 and 2 show high thermal stability with retention of crystallinity up to 350 °C. The desolvated materials 1a and 2a, in which the solvent has been removed from the pores but with water or hydroxide remaining coordinated to Sc(III), show BET surface areas based upon N(2) uptake of 634 and 1233 m(2) g(-1), respectively, and pore volumes calculated from the maximum N(2) adsorption of 0.25 cm(3) g(-1) and 0.62 cm(3) g(-1), respectively. At 20 bar and 78 K, the H(2) isotherms for desolvated 1a and 2a confirm 2.48 and 1.99 wt% total H(2) uptake, respectively. The isosteric heats of adsorption were estimated to be 5.25 and 2.59 kJ mol(-1) at zero surface coverage for 1a and 2a, respectively. Treatment of 2 with acetone followed by thermal desolvation in vacuo generated free metal coordination sites in a new material 2b. Framework 2b shows an enhanced BET surface area of 1511 m(2) g(-1) and a pore volume of 0.76 cm(3) g(-1), with improved H(2) uptake capacity and a higher heat of H(2) adsorption. At 20 bar, H(2) capacity increases from 1.99 wt% in 2a to 2.64 wt% for 2b, and the H(2) adsorption enthalpy rises markedly from 2.59 to 6.90 kJ mol(-1).  相似文献   

14.
Generally, crystals of synthetic porous materials such as metal-organic frameworks (MOFs) are commonly made up from one kind of repeating pore structure which predominates the whole material. Surprisingly, little is known about how to introduce heterogeneously arranged pores within a crystal of homogeneous pores without losing the crystalline nature of the material. Here, we outline a strategy for producing crystals of MOF-5 in which a system of meso- and macropores either permeates the whole crystal to make sponge-like crystals or is entirely enclosed by a thick crystalline microporous MOF-5 sheath to make pomegranate-like crystals. These new forms of crystals represent a new class of materials in which micro-, meso-, and macroporosity are juxtaposed and are directly linked unique arrangements known to be useful in natural systems but heretofore unknown in synthetic crystals.  相似文献   

15.
16.
Flexible nanoporous chromium or iron terephtalates (BDC) MIL-53(Cr, Fe) or M(OH)[BDC] have been used as matrices for the adsorption and in vitro drug delivery of Ibuprofen (or alpha- p-isobutylphenylpropionic acid). Both MIL-53(Cr) and MIL-53(Fe) solids adsorb around 20 wt % of Ibuprofen (Ibuprofen/dehydrated MIL-53 molar ratio = 0.22(1)), indicating that the amount of inserted drug does not depend on the metal (Cr, Fe) constitutive of the hybrid framework. Structural and spectroscopic characterizations are provided for the solid filled with Ibuprofen. In each case, the very slow and complete delivery of Ibuprofen was achieved under physiological conditions after 3 weeks with a predictable zero-order kinetics, which highlights the unique properties of flexible hybrid solids for adapting their pore opening to optimize the drug-matrix interactions.  相似文献   

17.
Hydrothermal reaction of La(NO(3))(3), NaHCO(3) and H(3)L (H(3)L = pyrazole-3,5-dicarboxylic acid) gives a 3D metal-organic framework with a dynamic porous property.  相似文献   

18.
Binetti M  Weisse O  Hasselbrink E  Komrowski AJ  Kummel AC 《Faraday discussions》2000,(117):313-20; discussion 331-45
We present experimental evidence that abstraction is a common mechanism (approximately 50%) in the dissociative chemisorption of oxygen on Al(111) at a translational energy of 0.5 eV. As a result of this mechanism, individual isolated O-atoms are observed in scanning tunneling microscopy (STM). At this translational energy ordinary dissociative chemisorption processes also occur, resulting in pairs of adatoms. The ejected O-atoms originating from the abstraction reaction are detected in the gas phase using laser spectrometry. Together, these observations provide compelling evidence for the abstraction mechanism.  相似文献   

19.
Hydrogen is dissociatively adsorbed on the gold particles in Au/Al(2)O(3) catalysts, as demonstrated by a combination of in-situ X-ray absorption spectroscopy, chemisorption, and H/D exchange experiments. This chemisorption of hydrogen induces changes in the Au L(3) and L(2) X-ray absorption near-edge structures. The gold atoms on corner and edge positions dissociate the hydrogen, which does not spill over to the face sites. Therefore, the average number of adsorbed hydrogen atoms per surface gold atom increases with decreasing particle size. With temperature, the hydrogen uptake by supported gold increases or remains constant, whereas it decreases for platinum. Furthermore, in H/D exchange experiments, the activity of Au/Al(2)O(3) increases strongly with temperature. Thus, the dissociation and adsorption of hydrogen on gold is activated.  相似文献   

20.
The nanoporous metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2(H2O)3.{guest} exhibits anomalous compression under applied pressure that is associated with the hyper-filling of the pore network. This behavior involves a dramatic transition between a "hard" regime (bulk modulus, Khard approximately 118 GPa), where the pressure-transmitting fluid penetrates the framework cavities, and a "soft" regime (Ksoft approximately 30 GPa), where the guest-framework system compresses concertedly. Not only is the duality in compressibility triggered by the availability of potential guests but the size/penetrability of the guest molecules determines the pressure at which the hard-soft transition occurs. Specifically, the observed compression behavior depends on the size of the pressure-transmitting fluid molecules, the sample particle size (i.e., the extent of the pore network), and the rate at which the pressure is increased. The unprecedented pressure-induced phenomena documented here, illustrates the exotic high-pressure behaviors possible in this versatile class of advanced functional materials with broad implications for their structure-function relationships and accordingly their practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号