共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin-dependent electronic transport through a quantum
dot has been analyzed theoretically in the cotunneling regime by
means of the second-order perturbation theory. The system is
described by the impurity Anderson Hamiltonian with arbitrary
Coulomb correlation parameter U. It is assumed that the dot
level is intrinsically spin-split due to an effective molecular
field exerted by a magnetic substrate. The dot is coupled to two
ferromagnetic leads whose magnetic moments are noncollinear. The
angular dependence of electric current, tunnel magnetoresistance,
and differential conductance are presented and discussed. The
evolution of a cotunneling gap with the angle between magnetic
moments and with the splitting of the dot level is also
demonstrated. 相似文献
2.
We present theoretical results for the equilibrium Josephson current through an Anderson dot tuned into the magnetic regime, using Hirsch-Fye Monte Carlo simulations covering the complete crossover from Kondo-dominated physics to pi junction behavior in a numerically exact way. Within the "magnetic" regime, U/Gamma > 1 and epsilon0/Gamma < or = 1, the Josephson current is found to depend only on Delta/TK, where Delta is the BCS gap and TK the Kondo temperature. The junction behavior can be classified into four different quantum phases. We describe these behaviors, specify the associated three transition points, and identify a local minimum in the critical current of the junction as a function of Delta/TK. 相似文献
3.
S. -H. Ouyang C. -H. Lam J. Q. You 《The European Physical Journal B - Condensed Matter and Complex Systems》2008,64(1):67-72
We study electron transport through a quantum dot, connected to non-magnetic leads, in a magnetic field. A super-Poissonian
electron noise due to the effects of both interacting localized states and dynamic channel blockade is found when the Coulomb
blockade is partially lifted. This is sharp contrast to the sub-Poissonian shot noise found in the previous studies for a
large bias voltage, where the Coulomb blockade is completely lifted. Moreover, we show that the super-Poissonian shot noise
can be suppressed by applying an electron spin resonance (ESR) driving field. For a sufficiently strong ESR driving field
strength, the super-Poissonian shot noise will change to be sub-Poissonian. 相似文献
4.
By employing the nonequilibrium Green's function, we investigate the spin-dependent linear Andreev reflection (AR) resonant tunneling through a quantum dot connected to a ferromagnetic lead and a superconducting lead, where the magnetization direction in the ferromagnetic lead can be tuned by one. We focus our attention on the effects of the magnetic fields on the AR conductance. One high conductance peak and one low conductance peak are developed in the linear AR conductance when a stronger magnetic field is considered. The interplay between the spin-flip scattering and the magnetic fields on the AR conductance are also studied. 相似文献
5.
We study competition between the Kondo effect and superconductivity in a single self-assembled InAs quantum dot contacted with Al lateral electrodes. Because of Kondo enhancement of Andreev reflections, the zero-bias anomaly develops side peaks, separated by the superconducting gap energy Delta. For ten valleys of different Kondo temperature T(K) we tune the gap Delta with an external magnetic field. We find that the zero-bias conductance in each case collapses onto a single curve with Delta/k(B)T(K) as the only relevant energy scale, providing experimental evidence for universal scaling in this system. 相似文献
6.
Sam Young Cho Kicheon Kang Chang-Mo Ryu Chul Koo Kim 《Superlattices and Microstructures》1999,26(6):405
Photon-assisted electron transport for resonant tunneling has been investigated by using a current formula developed based on the nonequilibrium Green’s function technique. We have studied the external frequency dependence as well as the energy level position dependence for the resonant ac tunneling through the quantum dot coupled to two superconducting reservoirs. 相似文献
7.
8.
Sun-Yong Hwang David Sánchez Rosa López 《The European Physical Journal B - Condensed Matter and Complex Systems》2017,90(10):189
We discuss the nonlinear Andreev current of an interacting quantum dot coupled to spin-polarized and superconducting reservoirs when voltage and temperature biases are applied across the nanostructure. Due to the particle-hole symmetry introduced by the superconducting (S) lead, the subgap spin current vanishes identically. Nevertheless, the Andreev charge current depends on the degree of polarization in the ferromagnetic (F) contact since the shift of electrostatic internal potential of the conductor depends on spin orientation of the charge carrier. This spin-dependent potential shift characterizes nonlinear responses in our device. We show how the subgap current versus the bias voltage or temperature difference depends on the lead polarization in two cases, namely (i) S-dominant case, when the dot-superconductor tunneling rate (Γ R ) is much higher than the ferromagnet-dot tunnel coupling (Γ L ), and (ii) F-dominant case, when Γ L ? Γ R . For the ferromagnetic dominant case the spin-dependent potential shows a nonmonotonic behavior as the dot level is detuned. Thus the subgap current can also exhibit interesting behaviors such as current rectification and the maximization of thermocurrents with smaller thermal biases when the lead polarization and the quantum dot level are adjusted. 相似文献
9.
10.
11.
Nonequilibrium spin transport through an interacting quantum dot is analyzed. The coherent spin oscillations in the dot provide a generating source for spin current. In the interacting regime, the Kondo effect is influenced in a significant way by the presence of the processing magnetic field. In particular, when the precession frequency is tuned to resonance between spin-up and spin-down states of the dot, Kondo singularity for each spin splits into a superposition of two resonance peaks. The Kondo-type cotunneling contribution is manifested by a large enhancement of the pumped spin current in the strong coupling low temperature regime. 相似文献
12.
Thermoelectric effects through a serial double quantum dot system weakly coupled to ferromagnetic leads are analyzed. Formal expressions of electrical conductance, thermal conductance, and thermal coefficient are obtained by means of Hubbard operators. The results show that although the thermopower is independent of the polarization of the leads, the figure of merit is reduced by an increase of polarization. The influences of temperature and interdot tunneling on the figure of merit are also investigated, and it is observed that increase of the interdot tunneling strength results in reduction of the figure of merit. The effect of temperature on the thermal conductance is also analyzed. 相似文献
13.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies. 相似文献
14.
We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin--orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters. 相似文献
15.
We investigate the effects of spin-polarized leads on the Kondo physics of a quantum dot using the numerical renormalization group method. Our study demonstrates in an unambiguous way that the Kondo effect is not necessarily suppressed by the lead polarization: While the Kondo effect is quenched for the asymmetric Anderson model, it survives even for finite polarizations in the regime where charge fluctuations are negligible. We propose the linear tunneling magnetoresistance as an experimental signature of these behaviors. We also report on the influence of spin-flip processes. 相似文献
16.
Photon-assisted shot noise through a quantum dot coupled to Luttinger liquid leads is considered using nonequilibrium-Green-function-method. We find that the effect of ac field on the differential shot noise is different for different intralead electron interaction. The inelastic channels associated with photon-assisted-tunneling can dominate electron transport for some ac parameters. 相似文献
17.
We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum. 相似文献
18.
P. Lombardo Y. Ezzaidi R. Hayn 《Physica E: Low-dimensional Systems and Nanostructures》2011,44(1):168-171
We study the spin dependent transport through a quantum dot connected to ferromagnetic leads. Using the non-equilibrium generalization of the non-crossing approximation for finite Coulomb repulsion U, we compute the spin polarized conductance, the local average occupancies and the local densities of states in the Kondo regime. We show that transport properties are strongly affected if we allow double occupancy by using a finite value for U. In the framework of our model, we have successfully reproduced the recent experimental finding of an electrically controlled magnetic moment on a carbon nanotube quantum dot coupled to ferromagnetic nickel leads [3]. Besides, in addition to the well known splitting of the Kondo peak in the density of states due to the presence of ferromagnetic leads, we find that the additional splitting due to non-zero bias voltage leads to an unexpected increase of the total conductance, which has also been observed by Hauptmann et al. 相似文献
19.
We theoretically investigate the density of states (DOS) of a quantum dot weakly coupled to Luttinger liquid (LL) leads in the Kondo regime by use of the equation-of-motion technique of the nonequilibrium Green functions. At zero temperature, the Kondo peak in DOS is suppressed by the intralead interaction. When the LL interaction parameter K is about 0.77, a moderately strong interaction, the Kondo peak disappears and then a dip develops, a signature of the intermediate two-channel Kondo (2CK) physics. This shows that the condition for the 2CK to occur ever addressed is not necessary. Applying a finite voltage bias splits the dip in the DOS. Each split dip is located at the chemical potential of a LL lead. This again appears the stabilized 2CK physics for moderately strong interaction K<1. 相似文献
20.
R. Taranko P. Parafiniuk 《The European Physical Journal B - Condensed Matter and Complex Systems》2011,84(1):89-97
We consider the electron transport through one-level quantum dot, out of the Kondo
regime, under the influence of the external microwave fields. The influence of the
intra-dot Coulomb electron-electron interaction is studied using the equation of motion
method for appropriate correlation functions. The formula for the current and the closed
set of the integro-differential equations for the expectation values of the quantum dot
charge states are given. The most characteristic feature of these time-averaged
expectation values is an appearance of the additional structure (sidebands) on the curves
of the derivatives of the expectation values with respect to the gate voltage. The
sidebands structure formed on both sides of the ‘ionization’ and ‘affinity’ quantum dot
levels are also found on the current and differential conductance curves. 相似文献