首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new complexes, Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) (where R = Et, n-Pr, i-Pr) and Mo(2)O(2)S(2)[S(2)POGO](2) (where G = -CH(2)CMe(2)CH(2)-, -CMe(2)CMe(2)-) have been prepared by the dropwise addition of an ethanolic solution of the ammonium or sodium salt of the appropriate O,O-dialkyl or -alkylene dithiophosphoric acid, or the acid itself, to a hot aqueous solution of molybdenum(V) pentachloride. The complexes were also formed by heating solutions of Mo(2)O(3)[S(2)P(OR)(2)](4) or Mo(2)O(3)[S(2)POGO](4) species in glacial acetic acid. The Mo(2)O(2)S(2)[S(2)P(OR)(2)](2) and Mo(2)O(2)S(2)[S(2)POGO](2) compounds were characterized by elemental analyses, (1)H, (13)C, and (31)P NMR, and infrared and Raman spectroscopy, as were the 1:2 adducts formed on reaction with pyridine. The crystal structures of Mo(2)O(2)S(2)[S(2)P(OEt(2))](2), Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5), and Mo(2)O(3)[S(2)P(OPh)(2)](4) were determined. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2) (1) crystallizes in space group C2/c, No. 15, with cell parameters a = 15.644(3) ?, b = 8.339(2) ?, c = 18.269(4) ?, beta = 103.70(2) degrees, V = 2315.4(8) ?(3), Z = 4, R = 0.0439, and R(w) = 0.0353. Mo(2)O(2)S(2)[S(2)P(OEt)(2)](2).2NC(5)H(5) (6) crystallizes in space group P&onemacr;, No. 2, with the cell parameters a = 12.663(4) ?,b = 14.291(5) ?, c = 9.349(3) ?, alpha = 100.04(3) degrees, beta = 100.67(3) degrees, gamma = 73.03(3) degrees V = 1557(1) ?(3), Z = 2, R = 0.0593, and R(w) = 0.0535. Mo(2)O(3)[S(2)P(OPh)(2)](4) (8) crystallizes in space group P2(1)/n, No. 14, with cell parameters a = 15.206(2)?, b = 10.655(3)?, c = 19.406(3)?, beta = 111.67(1) degrees, V = 2921(1)?(3), Z = 2, R = 0.0518, R(w) = 0.0425. The immediate environment about the molybdenum atoms in 1 is essentially square pyramidal if the Mo-Mo interaction is ignored. The vacant positions in the square pyramids are occupied by two pyridine molecules in 6, resulting in an octahedral environment with very long Mo-N bonds. The terminal oxygen atoms in both 1 and 6 are in the syn conformation. In 8, which also has a distorted octahedral environment about molybdenum, two of the dithiophosphate groups are bidentate as in 1 and 6, but the two others have one normal Mo-S bond and one unusually long Mo-S bond.  相似文献   

2.
The Schiff base N,N'-ethylenebis(pyridoxylideneiminato) (H(2)pyr(2)en, 1) was synthesized by reaction of pyridoxal with ethylenediamine; reduction of H(2)pyr(2)en with NaBH(4) yielded the reduced Schiff base N,N'-ethylenebis(pyridoxylaminato) (H(2)Rpyr(2)en, 2); their crystal structures were determined by X-ray diffraction. The totally protonated forms of 1 and 2 correspond to H(6)L(4+), and all protonation constants were determined by pH-potentiometric and (1)H NMR titrations. Several vanadium(IV) and vanadium(V) complexes of these and other related ligands were prepared and characterized in solution and in the solid state. The X-ray crystal structure of [V(V)O(2)(HRpyr(2)en)] shows the metal in a distorted octahedral geometry, with the ligand coordinated through the N-amine and O-phenolato moieties, with one of the pyridine-N atoms protonated. Crystals of [(V(V)O(2))(2)(pyren)(2)].2 H(2)O were obtained from solutions containing H(2)pyr(2)en and oxovanadium(IV), where Hpyren is the "half" Schiff base of pyridoxal and ethylenediamine. The complexation of V(IV)O(2+) and V(V)O(2) (+) with H(2)pyr(2)en, H(2)Rpyr(2)en and pyridoxamine in aqueous solution were studied by pH-potentiometry, UV/Vis absorption spectrophotometry, as well as by EPR spectroscopy for the V(IV)O systems and (1)H and (51)V NMR spectroscopy for the V(V)O(2) systems. Very significant differences in the metal-binding abilities of the ligands were found. Both 1 and 2 act as tetradentate ligands. H(2)Rpyr(2)en is stable to hydrolysis and several isomers form in solution, namely cis-trans type complexes with V(IV)O, and alpha-cis- and beta-cis-type complexes with V(V)O(2). The pyridinium-N atoms of the pyridoxal rings do not take part in the coordination but are involved in acid-base reactions that affect the number, type, and relative amount of the isomers of the V(IV)O-H(2)Rpyr(2)en and V(V)O(2)-H(2)Rpyr(2)en complexes present in solution. DFT calculations were carried out and support the formation and identification of the isomers detected by EPR or NMR spectroscopy, and the strong equatorial and axial binding of the O-phenolato in V(IV)O and V(V)O(2) complexes. Moreover, the DFT calculations done for the [V(IV)O(H(2)Rpyr(2)en)] system indicate that for almost all complexes the presence of a sixth equatorial or axial H(2)O ligand leads to much more stable compounds.  相似文献   

3.
Four different dianionic bis(amidinate) ligands ((iPr)L(DBF)(2)(-), (tBu,Et)L(DBF)(2)(-), (iPr)L(Xan)(2)(-), (tBu,Et)L(Xan)(2)(-)) featuring rigid dibenzofuran (DBF) and 9,9-dimethylxanthene (Xan) backbones have been used to prepare several new dititanium complexes. Reaction of the free-base bis(amidines) (LH(2)) with 2 equiv of Ti(NMe(2))(4) forms the hexaamido derivatives (iPr)L(DBF)Ti(2)(NMe(2))(6) (1), (tBu,Et)L(DBF)Ti(2)(NMe(2))(6) (2), (iPr)L(Xan)Ti(2)(NMe(2))(6) (3), and (tBu,Et)L(Xan)Ti(2)(NMe(2))(6) (4) in good yields. Compound 4, which features an unsymmetrically substituted bis(amidinate) ligand, was isolated as an 8:1 mixture of rotational diastereomers with C(2) and C(s)() symmetry, respectively. The two diastereomers interconvert upon heating, and at equilibrium the C(2) isomer is preferred thermodynamically by 0.2 kcal/mol. Compound 3 reacts with excess Me(3)SiCl in toluene to form the mixed amido-chloride derivative (iPr)L(Xan)Ti(2)(NMe(2))(2)Cl(4) (5) in low-moderate yield. Alternatively, 5 is also prepared by reaction of (iPr)L(Xan)H(2) with 2 equiv of Ti(NMe(2))(2)Cl(2) in good yield. Compound 3 reacts with CO(2) to form the red carbamate derivative (iPr)L(Xan)Ti(2)(NMe(2))(4)(O(2)CNMe(2))(2) (6) in moderate yield. Infrared data for 6 indicates bidentate coordination of the carbamate ligands. Metathesis reaction of (iPr)L(Xan)Li(2) with 2 equiv of CpTiCl(3) affords (iPr)L(Xan)Ti(2)Cp(2)Cl(4) (7) in moderate yield. Reduction of 7 with 1% Na amalgam in toluene solution affords the paramagnetic dititanium(III) complex (iPr)L(Xan)Ti(2)Cp(2)Cl(2) (8) in good yield. Structural studies reveal that 8 features two bridging chloride ligands. Reaction of the free-base bis(amidines) with 2 equiv of CpTiMe(3) forms the red sigma-alkyl derivatives (iPr)L(DBF)Ti(2)Cp(2)Me(4) (9), (tBu,Et)L(DBF)Ti(2)Cp(2)Me(4) (10), and (iPr)L(Xan)Ti(2)Cp(2)Me(4) (11) in good yields. Structural data are presented for compounds 4, 5, 8, and 9.  相似文献   

4.
(R)-[1-(Dimethylamino)ethyl]benzene reacts with nBuLi in a 1:1 molar ratio in pentane to quantitatively yield a unique hetero-aggregate (2 a) containing the lithiated arene, unreacted nBuLi, and the complexed parent arene in a 1:1:1 ratio. As a model compound, [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)] (2 b) was prepared from the quantitative redistribution reaction of the parent lithiated arene Li(C(6)H(4)CH(Me)NMe(2)-2) with nBuLi in a 1:1 molar ratio. The mono-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))] (2 c) and the bis-Et(2)O adduct [Li(4)(C(6)H(4)CH(Me)NMe(2)-2)(2)(nBu)(2)(OEt(2))(2)] (2 d) were obtained by re-crystallization of 2 b from pentane/Et(2)O and pure Et(2)O, respectively. The single-crystal X-ray structure determinations of 2 b-d show that the overall structural motifs of all three derivatives are closely related. They are all tetranuclear Li aggregates in which the four Li atoms are arranged in an almost regular tetrahedron. These structures can be described as consisting of two linked dimeric units: one Li(2)Ar(2) dimer and a hypothetical Li(2)nBu(2) dimer. The stereochemical aspects of the chiral Li(2)Ar(2) fragment are discussed. The structures as observed in the solid state are apparently retained in solution as revealed by a combination of cryoscopy and (1)H, (13)C, and (6)Li NMR spectroscopy.  相似文献   

5.
The first examples of ring-closing metathesis (RCM) reactions of a series of terminal alkene-derived cyclic phosphazenes have been carried out. The tetrakis-, hexakis-, and octakis(allyloxy)cyclophosphazenes (NPPh(2))(NP(OCH(2)CH=CH(2))(2))(2) (1), N(3)P(3)(OCH(2)CH=CH(2))(6) (2), and N(4)P(4)(OCH(2)CH=CH(2))(8) (3) and the tetrakis(allyloxy)-S-phenylthionylphosphazene (NS(O)Ph)[NP(OCH(2)CH=CH(2))(2)](2) (4) were prepared by the reactions of CH(2)=CHCH(2)ONa with the cyclophosphazenes (NPPh(2))(NPCl(2))(2), N(3)P(3)Cl(6), and N(4)P(4)Cl(8) and the S-phenylthionylphosphazene (NS(O)Ph)(NPCl(2))(2). The reactions of 1-4 with Grubbs first-generation olefin metathesis catalyst Cl(2)Ru=CHPh(PCy(3))(2) resulted in the selective formation of seven-membered di-, tri-, and tetraspirocyclic phosphazene compounds (NPPh(2))[NP(OCH(2)CH=CHCH(2)O)](2) (5), N(3)P(3)(OCH(2)CH=CHCH(2)O)(3) (6), and N(4)P(4)(OCH(2)CH=CHCH(2)O)(4) (7) and the dispirocyclic S-phenylthionylphosphazene compound (NS(O)Ph)[NP(OCH(2)CH=CHCH(2)O)](2) (8). X-ray structural studies of 5-8 indicated that the double bond of the spiro-substituted cycloalkene units is in the cis orientation in these compounds. In contrast to the reactions of 1-4, RCM reactions of the homoallyloxy-derived cyclophosphazene and thionylphosphazene (NPPh(2))[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (9) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (10) with the same catalyst resulted in the formation of 11-membered diansa compounds NPPh(2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (11) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (13) and the intermolecular doubly bridged ansa-dibino-ansa compounds 12 and 14. The X-ray structural studies of compounds 11 and 13 indicated that the double bonds of the ansa-substituted cycloalkene units are in the trans orientation in these compounds. The geminal bis(homoallyloxy)tetraphenylcyclotriphosphazene [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CH(2))(2)] (15) upon RCM with Grubbs first- and second-generation catalysts gave the spirocyclic product [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)] (16) along with the geminal dibino-substituted dimeric compound [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)(2)PN][NPPh(2)](2) (17) as the major product. The dibino compound 17, upon reaction with the Grubbs second-generation catalyst, was found to undergo a unique ring-opening metathesis reaction, opening up the bino bridges and partially converting to the spirocyclic compound 16.  相似文献   

6.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

7.
In the quest for low-molecular-weight metal sulfur complexes that bind nitrogenase-relevant small molecules and can serve as model complexes for nitrogenase, compounds with the [Ru(PiPr(3))('N(2)Me(2)S(2)')] fragment were found ('N(2)Me(2)S(2)'(2-)=1,2-ethanediamine-N,N'-dimethyl-N,N'-bis(2-benzenethiolate)(2-)). This fragment enabled the synthesis of a first series of chiral metal sulfur complexes, [Ru(L)(PiPr(3))('N(2)Me(2)S(2)')] with L=N(2), N(2)H(2), N(2)H(4), and NH(3), that meet the biological constraint of forming under mild conditions. The reaction of [Ru(NCCH(3))(PiPr(3))('N(2)Me(2)S(2)')] (1) with NH(3) gave the ammonia complex [Ru(NH(3))(PiPr(3))('N(2)Me(2)S(2)')] (4), which readily exchanged NH(3) for N(2) to yield the mononuclear dinitrogen complex [Ru(N(2))(PiPr(3))('N(2)Me(2)S(2)')] (2) in almost quantitative yield. Complex 2, obtained by this new efficient synthesis, was the starting material for the synthesis of dinuclear (R,R)- and (S,S)-[micro-N(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] ((R,R)-/(S,S)-3). (Both 2 and 3 have been reported previously.) The as-yet inexplicable behavior of complex 3 to form also the R,S isomer in solution has been revealed by DFT calculations and (2)D NMR spectroscopy studies. The reaction of 1 or 2 with anhydrous hydrazine yielded the hydrazine complex [Ru(N(2)H(4))(PiPr(3))('N(2)Me(2)S(2)')] (6), which is a highly reactive intermediate. Disproportionation of 6 resulted in the formation of mononuclear diazene complexes, the ammonia complex 4, and finally the dinuclear diazene complex [micro-N(2)H(2)[Ru(PiPr(3))('N(2)Me(2)S(2)')](2)] (5). Dinuclear complex 5 could also be obtained directly in an independent synthesis from 1 and N(2)H(2), which was generated in situ by acidolysis of K(2)N(2)(CO(2))(2). Treatment of 6 with CH(2)Cl(2), however, formed a chloromethylated diazene species [[Ru(PiPr(3))('N(2)Me(2)S(2)')]-micro-N(2)H(2)[Ru(Cl)('N(2)Me(2)S(2)CH(2)Cl')]] (9) ('N(2)Me(2)S(2)CH(2)Cl'(2-) =1,2-ethanediamine-N,N'-dimethyl-N-(2-benzenethiolate)(1-)-N'-(2-benzenechloromethylthioether)(1-)]. The molecular structures of 4, 5, and 9 were determined by X-ray crystal structure analysis, and the labile N(2)H(4) complex 6 was characterized by NMR spectroscopy.  相似文献   

8.
Jimtaisong A  Luck RL 《Inorganic chemistry》2006,45(25):10391-10402
The dioxo tungsten(VI) and molybdenum(VI) complexes WCl2(O)2(OPMePh2)2, WCl2(O)2dppmO2, and MoCl2(O)2dppmO2, the oxoperoxo compounds WCl2(O)(O2)(OPMePh2)2, WCl2(O)(O2)dppmO2, and MoCl2(O)(O2)dppmO2, and the oxodiperoxo complexes, W(O)(O2)2dppmO2 and Mo(O)(O2)2dppmO2 have been prepared and characterized by IR spectroscopy, 31P NMR spectroscopy, elemental analysis, and X-ray crystallography. The structural and X-ray crystallographic data of compounds WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2.4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2 are also detailed. All complexes were studied as catalysts for cis-cyclooctene epoxidation in the presence of tert-butyl hydroperoxide (TBHP) or H2O2 as an oxidant. The Mo-based catalysts showed a superior reactivity over W-based catalysts in the TBHP system. On the other hand, in the H2O2 system, the W-based catalysts (accomplishing nearly 100% epoxidation of cyclooctene in 6 h) are more reactive than the Mo catalysts (<45% under some conditions). Various solvent systems have been investigated, and ethanol is the most suitable solvent for the H2O2 system.  相似文献   

9.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   

10.
The molybdenum and tungsten complexes W2(NtBu)4(pz)4(pzH).(C6H14)0.5 (pz = pyrazolate), M(NtBu)2(Me2pz)2(Me2pzH)2 (Me2pz = 3,5-dimethylpyrazolate), M(NtBu)2(tBu2pz)2 (tBu2pz = 3,5-di-tert-butylpyrazolate), M2(NtBu)4(Me2pz)2Cl2, W(NtBu)2(C2N3(iPr)2)2py2, M(NtBu)2-(CN4CF3)2py2, and W(NtBu)2(PhNNNPh)2 were prepared by various synthetic routes from the starting materials Mo(NtBu)2Cl2, W(NtBu)2(NHtBu)2, and W(NtBu)2Cl2py2. These new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use in thin film growth of metal nitride films. Mo(NtBu)2(tBu2pz)2 and W(NtBu)2(tBu2pz)2 were found to have the optimum combination of volatility and thermal stability for application in atomic layer deposition thin film growth procedures.  相似文献   

11.
The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather different architectures. Thus, the reaction between pym(2)S(2) and CuI leads to the formation of [Cu(3)I(pymS)(2)](n) (3) and [CuI(pym(2)S(3))] (pym(2)S(3) = pyrimidiltrisulfide) (4), while [Cu(3)Br(pymS)(2)](n) (5) is isolated in the reaction with CuBr(2). Finally, the solvothermal reactions between CuI and pyrimidine-2-thione (pymSH) in CH(2)Cl(2):CH(3)CN at different ratios, 1:1 or 2:1, give the polymers [Cu(2)I(2)(pymSH)(2)](n) (6) and [Cu(2)I(2)(pymSH)](n) (7), respectively. The structure of the new compounds has been determined by X-ray diffraction. The studies of the physical properties of the novel coordination polymers reveal that compounds 3 and 5 present excellent electrical conductivity values at room temperature, while compounds 1, 3, and 5-7 show luminescent strong red emission at room temperature.  相似文献   

12.
We discuss the importance of the topography of the potential energy hypersurface for the ionic conductivity of perovskite-related A(2)B(2)O(5) oxides. A correlation between the energetic preference of the cations for different coordination geometries and the ionic conductivity is proposed based on a first principles periodic density functional theory study of selected possible structures for Ba(2)In(2)O(5), Sr(2)Fe(2)O(5), Sr(2)Mn(2)O(5), and La(2)Ni(2)O(5). There are a large number of low-energy local minima on the potential energy hypersurfaces of the two first compounds due to an energetic preference for BO(4) tetrahedra. Tetrahedral environments are energetically unfavorable for Mn(III) in Sr(2)Mn(2)O(5) and for Ni(II) in La(2)Ni(2)O(5), and the number of low-energy configurations is relatively low in these two cases. Consistent with our findings, in contrast to Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5), Sr(2)Mn(2)O(5) and La(2)Ni(2)O(5) do not exhibit transitions to disordered phases on heating, and there appear to be no reports of enhanced ionic conductivity for these compounds. Thus we suggest that the possibility of many different oxygen orderings associated with a variety of low-energy connectivity schemes within tetrahedral layers such as in the brownmillerite-based structures of Sr(2)Fe(2)O(5) and Ba(2)In(2)O(5) is a prerequisite for high ionic conductivity in perovskite-related A(2)B(2)O(5) oxides.  相似文献   

13.
The heterocumulenes carbon dioxide (CO(2)), carbonyl sulfide (OCS), and carbon disulfide (CS(2)) were treated with bis(2,2,5,5-tetramethyl-2,5-disila-1-azacyclopent-1-yl)tin {[(CH(2))Me(2)Si](2)N}(2)Sn, an analogue of the well-studied bis[bis(trimethylsilyl)amido]tin species [(Me(3)Si)(2)N](2)Sn, to yield an unexpectedly diverse product slate. Reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CO(2) resulted in the formation of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane, along with Sn(4)(μ(4)-O){μ(2)-O(2)CN[SiMe(2)(CH(2))(2)]}(4)(μ(2)-N═C═O)(2) as the primary organometallic Sn-containing product. The reaction of {[(CH(2))Me(2)Si](2)N}(2)Sn with CS(2) led to formal reduction of CS(2) to [CS(2)](2-), yielding [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn, in which the [CS(2)](2-) is coordinated through C and S to two tin centers. The product [{[(CH(2))Me(2)Si](2)N}(2)Sn](2)CS(2){[(CH(2))Me(2)Si](2)N}(2)Sn also contains a novel 4-membered Sn-Sn-C-S ring, and exhibits a further bonding interaction through sulfur to a third Sn atom. Reaction of OCS with {[(CH(2))Me(2)Si](2)N}(2)Sn resulted in an insoluble polymeric material. In a comparison reaction, [(Me(3)Si)(2)N](2)Sn was treated with OCS to yield Sn(4)(μ(4)-O)(μ(2)-OSiMe(3))(5)(η(1)-N═C═S). A combination of NMR and IR spectroscopy, mass spectrometry, and single crystal X-ray diffraction were used to characterize the products of each reaction. The oxygen atoms in the final products come from the facile cleavage of either CO(2) or OCS, depending on the reacting carbon dichalogenide.  相似文献   

14.
Hu J  Liu G  Jiang Q  Zhang R  Huang W  Yan H 《Inorganic chemistry》2010,49(23):11199-11204
Treatment of ortho-carborane, n-butyl lithium, sulfur, and [(p-cymene)RuCl(2)](2) in varying ratio led to four new compounds (p-cymene)Ru[S(3)(C(2)B(10)H(10))(2)] (3), [(p-cymene)Ru(2)(μ(2)-S(2)C(2)B(10)H(9))(μ(3)-S(2)C(2)B(10)H(10))](2) (4), [(p-cymene)Ru](2)Ru(μ(2)-η(2):η(2)-S(2)) (μ(2)-η(2):η(1)-S(2)Cl)(μ(2)-S(2)C(2)B(10)H(10))(2) (5), and [(p-cymene)Ru](2)Ru(μ(2)-η(1):η(1)-S(2))(μ(3)-η(2):η(2)-S(4)) (μ(2)-S(2)C(2)B(10)H(10))(2) (6), respectively. In 3, the ruthenium atom is coordinated by three S atoms from a in situ generated tridentate [S(3)(C(2)B(10)H(10))(2)](2-) ligand. 4 consists of two identical dinuclear (p-cymene)Ru(2)(μ(2)-S(2)C(2)B(10)H(9))(μ(3)-S(2)C(2)B(10)H(10)) subunits which connect to each other via the Ru-Ru bond and two bridging o-carborane-1,2-dithiolate ligands. In 4, a Ru-B bond is present. 5 contains a Ru(3)(μ(2)-S)(2)(μ(2)-S(2))(μ(2)-S(2)Cl) core, and the central ruthenium atom is coordinated by seven S atoms in a distorted pentagonal bipyramidal geometry. In 5, a S-Cl bond is generated. 6 has a novel Ru(3)(μ(2)-S)(2)(μ(2)-S(2))(μ(3)-S(4)) core, and the three ruthenium atoms are connected through the two terminal sulfur atoms of the S-S-S-S chain in a μ(3) binding fashion. All the four complexes have been characterized by elemental analysis, mass, NMR, and X-ray crystallography.  相似文献   

15.
Well-known vanadium(IV)- and vanadium(V)-citrate complexes have been employed in transformations involving vanadium redox as well as nonredox processes. The employed complexes include K(2)[V(2)O(4)(C(6)H(6)O(7))(2)] x 4H(2)O, K(4)[V(2)O(4)(C(6)H(5)O(7))(2)] x 5.6H(2)O, K(2)[V(2)O(2)(O(2))(2)(C(6)H(6)O(7))(2)] x 2H(2)O, K(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 6H(2)O, K(3)[V(2)O(2)(C(6)H(4)O(7))(C(6)H(5)O(7))] x 7H(2)O, (NH(4))(4)[V(2)O(2)(C(6)H(4)O(7))(2)] x 2H(2)O, and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)] x 6H(2)O. Reactions toward hydrogen peroxide at different vanadium(IV,V):H(2)O(2) ratios were crucial in delineating the routes leading to the interconversion of the various species. Equally important thermal transformations were critical in showing the linkage between pairs of dinuclear vanadium-citrate peroxo as well as nonperoxo complexes, for which the important vanadium(V)-assisted oxidative decarboxylation, leading to reduction of vanadium(V) to vanadium(IV), seemed to be a plausible pathway in place for all the cases examined. FT-IR spectroscopy and X-ray crystallography were instrumental in the identification of the arising products of all investigated reactions. Collectively, the data support the existence of chemical links between different and various structural forms of dinuclear vanadium(IV,V)-citrate complexes in aqueous media. Furthermore, in corroboration of past studies, the examined interconversions lend credence to the notion that the involved species are active participants in the respective aqueous distributions of the metal ion in the presence of the physiological ligand citrate. The concomitant significance of structure-specific species relating to soluble and potentially bioavailable forms of vanadium is mentioned.  相似文献   

16.
Hydrogen peroxide (H(2)O(2)) acts as a signaling molecule in a wide variety of signaling transduction processes and an oxidative stress marker in aging and disease. However, excessive H(2)O(2) production is implicated with various diseases. Nitric oxide (NO) serves as a secondary messenger inducing vascular smooth muscle relaxation. However, mis-regulation of NO production is associated with various disorders. To disentangle the complicated inter-relationship between H(2)O(2) and NO in the signal transduction and oxidative pathways, fluorescent reporters that are able to display distinct signals to H(2)O(2), NO, and H(2)O(2)/NO are highly valuable. Herein, we present the rational design, synthesis, spectral properties, and living cell imaging studies of FP-H(2)O(2)-NO, the first single-fluorescent molecule, that can respond to H(2)O(2), NO, and H(2)O(2)/NO with three different sets of fluorescence signals. FP-H(2)O(2)-NO senses H(2)O(2), NO, and H(2)O(2)/NO with a fluorescence signal pattern of blue-black-black, black-black-red, and black-red-red, respectively. Significantly, we have further demonstrated that FP-H(2)O(2)-NO, a single fluorescent probe, is capable of simultaneously monitoring endogenously produced NO and H(2)O(2) in living macrophage cells in multicolor imaging. We envision that FP-H(2)O(2)-NO will be a unique molecular tool to investigate the interplaying roles of H(2)O(2) and NO in the complex interaction networks of the signal transduction and oxidative pathways. In addition, this work establishes a robust strategy for monitoring the multiple ROS and RNS species (H(2)O(2), NO, and H(2)O(2)/NO) using a single fluorescent probe, and the modularity of the strategy may allow it to be extended for other types of biomolecules.  相似文献   

17.
Anandhi U  Sharp PR 《Inorganic chemistry》2004,43(21):6780-6785
The pK(a) values in DMSO of the monoprotic complexes [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) (4) (L(2) = Ph(2)PCH(2)CH(2)PPh(2) (dppe), Ph(2)PCMe(2)PPh(2) (dppip)) are 11.9 +/- 0.1 (L(2) = dppe) and 13.5 +/- 0.2 (L(2) = dppip) as determined by (31)P NMR equilibrium titration with bases of known pK(a). Complexes 4 were prepared by treatment of [L(2)Pt(mu-OH)](2)(2+) (1) with N-methylaniline. The oxo complexes [(L(2)Pt)(2)(mu-O)(mu-NMePh)](+), formed in the equilibrium titration reactions, were independently synthesized in THF by deprotonation of [(L(2)Pt)(2)(mu-OH)(mu-NMePh)](2+) with NaN(SiMe(3))(2) and characterized as NaBF(4) adducts. Similar experiments with diprotic [L(2)Pt(mu-OH)](2)(2+) (L(2) = dppe, Ph(2)PCH(2)CH(2)CH(2)PPh(2) (dppp)) were complicated by exchange processes and were less conclusive, giving pK(a1) < 18 and pK(a2) > 18 in DMSO.  相似文献   

18.
A series of dinuclear chelate complexes of the general composition [Rh2(kappa2-L)2(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = CF3CO2-, acac-, acac-f3-) and [Rh2Cl(kappa2-L)(mu-CR2)2(mu-SbiPr3)] (R = Ph, p-Tol; L = acac-, acac-f3-) has been prepared by replacement of the chloro ligands in the precursors [Rh2Cl2(mu-CR2)2(mu-SbiPr3)] by anionic chelates. The lability of the SbiPr3 bridge in the rhodium dimers is illustrated by the reactions of [Rh2(kappa2-acac)2(mu-CR2)2(mu-SbiPr3)] (7, 8) with Lewis bases such as CO, CNtBu, and SbEt3 which lead to the formation of the substitution products [Rh2(kappa2-acac)2(mu-CR2)2(mu-L')] (13-16) in excellent yields. Treatment of 7 and 8 with sterically demanding tertiary phosphanes PR3 (R3 = iPr3, iPr2Ph, iPrPh2, Ph3) affords the mixed-valence Rh0-RhII complexes [(kappa2-acac)2Rh(mu-CPh2)2Rh(PR3)] (21-24) and [(kappa2-acac)2Rh(mu-C(p-Tol)2]2Rh(PiPr3)] (25) for which there is no precedence. The terminal PiPr3 ligand of 21 is easily displaced by alkynes, CNtBu, and CO to give, by preserving the [(kappa2-acac)2Rh(mu-CPh2)2Rh] molecular core, the related dinuclear compounds 26-31 in which the coordination number of the Rh0 center is 3, 4, or 5. The molecular structures of [Rh2Cl(kappa2-acac)(mu-CPh2)2(mu-SbiPr3)] (5), [Rh2(kappa2-acac)2(mu-CPh2)2(mu-CO)] (13), [(kappa2-acac)2Rh(mu-CPh2)2Rh(PiPr3)] (21), and [(kappa2-acac)2Rh(mu-CPh2)2Rh(CNtBu)2] (30) have been determined crystallographically.  相似文献   

19.
A series of linear coordination polymers, metallacycles of cadmium(II) and mercury(II) of flexible carboxylic acid ligands, RCH{3-CH(3)-,5-CH(3)-,6-(-OCH(2)CO(2)H)C(6)H(2)}(2), (when R = C(6)H(5), (H(2)L(1)); 2-NO(2)C(6)H(4)- (H(2)L(2)) and 3-NO(2)C(6)H(4)- (H(2)L(3))) are synthesized and characterized. [CdL(1) (py)(3)](n)·3nH(2)O (py = pyridine) is a linear coordination polymer, whereas [CdL(2)(py)(CH(3)OH)](2)·CH(3)OH is a dinuclear complex of cadmium with a Cd(2)O(2) type of core. The latter is obtained from reaction of cadmium(II) acetate with H(2)L(2) in methanol followed by reaction with pyridine. A similar reaction of cadmium(II) acetate with H(2)L(2) in dimethylformamide results in the formation of a cadmium metallacycle, namely [CdL(2) (py)(2)(H(2)O)](2)·H(2)O. The H(2)L(3) reacted with cadmium(II) acetate in the presence of pyridine to form a metallacycle [CdL(3)(py)(2)(H(2)O)](2)·3H(2)O. The ligand H(2)L(2) form mercury(II) metallacycle [HgL(2)(4-mepy)(2)](2) in the presence of 4-methylpyridine (4-mepy) and the ligand H(2)L(3) forms metallacycle [HgL(3)(3-mepy)(2)](2)·DMF in the presence of 3-methylpyridine (3-mepy). The potassium salts of H(2)L(1) and H(2)L(2) were found to be coordination polymers and these potassium coordination polymers were structurally characterized.  相似文献   

20.
The fundamental nature of Ti(III) complexes generated in tetrahydrofuran by reduction of Cp(2)TiCl(2) has been clarified by means of cyclic voltammetry and kinetic measurements. While the electrochemical reduction of Cp(2)TiCl(2) leads to the formation of Cp(2)TiCl(2)(-), the use of metals such as Zn, Al, or Mn as reductants affords Cp(2)TiCl and (Cp(2)TiCl)(2) in a mixture having a dimerization equilibrium constant of 3 x 10(3) M(-)(1), independent of the metal used. Thus, we find it unlikely that the trinuclear complexes or ionic clusters known from the solid phase should be present in solution as previously suggested. The standard potentials determined for the redox couples Cp(2)TiCl(2)/Cp(2)TiCl(2)(-), (Cp(2)TiCl)(2)(+)/(Cp(2)TiCl)(2), Cp(2)TiCl(+)/Cp(2)TiCl, and Cp(2)Ti(2+)/Cp(2)Ti(+) increase in the order listed. However, the reactivity of the different Ti(III) complexes is assessed as (Cp(2)TiCl)(2) greater, similar Cp(2)TiCl approximately Cp(2)Ti(+) > Cp(2)TiCl(2)(-) in their reactions with benzyl chloride and benzaldehyde. None of the reactions proceed by an outer-sphere electron transfer pathway, and clearly the inner-sphere character is much higher in the case of Cp(2)Ti(+) than for (Cp(2)TiCl)(2), Cp(2)TiCl, and in particular Cp(2)TiCl(2)(-). As to the electron acceptor, the inner-sphere character increases, going from benzyl chloride to benzaldehyde, and it is suggested that the chlorine atom in benzyl chloride and the oxygen atom in benzaldehyde may function as bridges between the reactants in the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号