首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion-limited binding kinetics of analyte in solution to either a receptor immobilized on a surface or to a receptorless surface is analyzed within a fractal framework for a surface plasmon resonance biosensor. The data is adequately described by a single- or a dual-fractal analysis. Initially, the data was modeled by a single-fractal analysis. If an inadequate fit was obtained then a dual-fractal analysis was utilized. The regression analysis provided by Sigmaplot (32) was used to determine if a single fractal analysis is sufficient or if a dual-fractal analysis is required. In general, it is of interest to note that the binding rate coefficient and the fractal dimension exhibit changes in the same direction (except for a single example) for the analyte-receptor systems analyzed. Binding rate coefficient expressions as a function of the fractal dimension developed for the analyte-receptor binding systems indicate, in general, the high sensitivity of the binding rate coefficient on the fractal dimension when both a single- and a dual-fractal analysis is used. For example, for a single-fractal analysis and for the binding of human endothelin-1 (ET-1) antibody in solution to ET-115-21.BSA immobilized on a surface plasmon resonance (SPR) surface (33), the order of dependence of the binding rate coefficient, k, on the fractal dimension, Df, is 6.4405. Similarly, for a dual-fractal analysis and for the binding of 10(-6) to 10(-4) M bSA in solution to a receptorless surface (direct binding to SPR surface) (41) the order of dependence of k1 and k2 on Df1 and Df2 were -2.356 and 6.241, respectively. Binding rate coefficient expressions are also developed as a function of the analyte concentration in solution. The binding rate coefficient expressions developed as a function of the fractal dimension(s) are of particular value since they provide a means to better control SPR biosensor performance by linking it to the degree of heterogeneity that exists on the SPR biosensor surface. Copyright 1999 Academic Press.  相似文献   

2.
The topography of platinum electrodes produced by electrodeposition (19 to 200 mC cm-2) on highly oriented pyrolytic graphite (HOPG) under different potential modulations was investigated by atomic force microscopy, scanning tunneling microscopy, and H-atom electrosorption voltammetry. To modulate electrodeposition, (i) triangular potential cycling at 0.1 V s-1, (ii) a linear cathodic potential at 0.1 V s-1 and anodic potential step cycling, and (iii) square wave potential cycling at 5000 Hz were utilized. AFM and STM imaging showed that at lower platinum loading the HOPG surface was partially covered by a 3D sublayer of platinum. Electrodes produced by procedure (i) were made of faceted platinum aggregates of about 200 nm and nanoclusters in the range of 5-20 nm; those that resulted from procedure (ii) consisted of anisotropic aggregates of nanoclusters arranged as quasi-parallel domains. These electrodes from (i) and (ii) behaved as fractal objects. The electrodes resulting from procedure (iii) exhibited a flat surface that behaved as a Euclidean object. For all WEs, as the platinum loading was increased the HOPG surface was fully covered by a thin 3D layer of platinum aggregates produced by electrodeposition and coalescence phenomena. Large platinum loading led to electrodes with fractal geometry. Statistical parameters (root-mean-square height, skewedness, kurtosis, anisotropy, Abbot curve, number of protrusions and valleys, and fractal dimension) were obtained from the analysis of AFM and STM imaging data. Platinum electrodeposition coupled to either H-adatom formation for procedures (i) and (ii) or phonon dispersion for (iii) was involved in the surface atom rearrangements related to electrofaceting. The H-adatom electrosorption voltammetry data were used to evaluate the real electrode surface area via the voltammetric charge and to advance a tentative explanation of the contribution of the different crystallographic facets to the global electrochemical process dominated by weak H-Pt adsorption interactions.  相似文献   

3.
The interaction between particles in a system containing fractal clusters has been computationally simulated. The fractal structure of the system has been demonstrated to determine the kinetic characteristics of particle interaction. If a system in an N-dimensional space (N = 2, 3, 4) contains fractal clusters with the fractal dimension D > N-1, the rate of interaction of a free particle with particles belonging to clusters depends on their concentration according to the power law. The exponent gamma of this power law formally corresponds to the kinetic order of the reaction with respect to the concentration of particles belonging to the clusters. Its value is determined by the free surface of the clusters and depends on its fractal dimension D. The results of simulation qualitatively agree with the data on high, non-integral orders of many liquid phase molecular reactions characterized by self-organization of the medium via weak intermolecular interactions, such as hydrogen bonds.  相似文献   

4.
We investigated the interfacial electrochemical processes on graphite anode of lithium ion battery by using highly oriented pyrolytic graphite(HOPG)as a model system.In situ electrochemical atomic force microscopy experiments were performed in 1M lithium bis(trifluoromethanesulfonyl)imide/ethylene carbonate/diethyl carbonate to reveal the formation process of solid electrolyte interphase(SEI)on HOPG basal plane during potential variation.At 1.45 V,the initial deposition of SEI began at the defects of HOPG surface.After that,direct solvent decomposition took place at about 1.3 V,and the whole surface was covered with SEI.The thickness of SEI was 10.4±0.2 nm after one cycle,and increased to 13.8±0.2 nm in the second cycle,which is due to the insufficient electron blocking ability of the surface film.The Young’s modulus of SEI was measured by a peak force quantitative nanomechanical mapping(QNM).The Young’s modulus of SEI is inhomogeneous.The statistic value is 45±22 MPa,which is in agreement with the organic property of SEI on basal plane of HOPG.  相似文献   

5.
分形是非线性科学中的一个重要分支,自1973年Mandelbrot提出分形这一概念以来[1],关于分形的实验和理论研究日益受到人们的重视[2,3].自发现7,7,8,8 四氰基对苯醌二甲烷(TCNQ)与某些电子给体的复合物薄膜具有独特的电学特性[4,5],至今人们对TCNQ类薄膜器件进行了广泛的研究[6 -10].Gao等[11,12] 最早报导了真空离子团束 (ICB)沉积的C60 TCNQ复合薄膜有独特的“海马”分形结构.由于ICB沉积技术中的粒子有一定的荷电几率,而外加电场又会影响薄膜生长初期的分…  相似文献   

6.
Latex aggregates, formed in 1 M McIlvaine buffer solution and 0.2 M NaCl solution, have been characterized in terms of aggregate size distribution and fractal morphology. This was achieved using three sizing techniques (image analysis, laser scattering, and electrical sensing) in which size distributions and fractal properties of the aggregates were measured. Estimates of fractal dimensions were made using the two-slope method based on dimensional analysis and the small-angle light scattering method. Aggregate suspensions were prepared using both water and a mixture of heavy water/ water as the solvent. The latter essentially eliminated sedimentation, which was observed after one day of aggregation when water alone was used as a solvent. Latex aggregates formed by diffusion-limited colloid aggregation (DLCA) and reaction-limited colloid aggregation (RLCA) had fractal dimensions close to 1.8 and 2.1, respectively. As observed through image analysis, DLCA aggregates possessed a loose tenuous structure, whereas RLCA aggregates were more compact. Disruption of both DLCA and RLCA aggregates has been investigated in laminar flow and turbulent capillary flow. The shear forces introduced by a laminar shear device with a shear rate up to 1711 s(-1) were unable to bring about aggregate breakup; shearing facilitates aggregate growth in the case of DLCA. However, latex aggregates were significantly disrupted after passage through a turbulent capillary tube at 95209 s(-1). Copyright 2000 Academic Press.  相似文献   

7.
Surface-templated nanostructures on the highly oriented pyrolytic graphite (HOPG) basal plane were created by controlled Cs+- or Ga+)ion bombardment, followed by subsequent oxidation at high temperature, forming molecule corrals. The corrals were then used for template growth of SiOx/Si nanostructures. We demonstrate here that, for SiOx/Si nanostructures formed in controlled molecule corrals, the amount of silicon deposited on the surface is directly correlated with the corral density, making it possible to generate patterned SiOx/Si nanostructures on HOPG. Since the size, depth, position, and surface density of the nanostructures can be controlled on the HOPG, it is possible to produce surfaces with patterned or gradient functionalities for applications in fields such as biosensors, microelectronics, and biomaterials (e.g., neuron pathfinding). If desired, the SiOx structures can be reduced in size by etching in dilute HF, and further oxidation of the nanostructures is slow enough to provide plenty of time to functionalize them using ambient and solution reactions and to perform surface analysis. Organosilane monolayers on surface-templated SiOx/Si nanostructures were examined by X-ray photoelectron spectroscopy, time-of-flight secondary ion mas spectrometry, and atomic force microscopy. Silanes with long alkyl chains such as n-octadecyltrichlorosilane (C18) were found to both react on SiOx/Si nanostructures and to condense on the HOPG basal plane. Shorter-chain silanes, such as 11-bromoundicyltrimethoxysilane (C11) and 3-mercaptopropyltrimethoxysilane (C3) were found to react preferentially with SiOx/Si nanostructures, not HOPG. The SiOx/Si nanostructures were also found to be stable toward multiple chemical reactions. Selective modification of SiOx/Si nanostructures on the HOPG basal plane is thus achievable.  相似文献   

8.
Electrochemically controlled formation and growth of hydrogen nanobubbles   总被引:2,自引:0,他引:2  
Electrogenerated microscale bubbles that are confined at the electrode surface have already been extensively studied because of their significant influence on electrochemistry. In contrast, as far as we know, whether nanoscale bubbles exist on the electrode surface has not been experimentally confirmed yet. Here, we report the observation of electrochemically controlled formation and growth of hydrogen nanobubbles on bare highly oriented pyrolytic graphite (HOPG) surface via in-situ tapping mode atomic force microscopy (TMAFM). By using TMAFM imaging, we observed that electrochemically generated hydrogen gas led to the formation of nanobubbles at the HOPG surface. We then employed a combination of techniques, including phase imaging, ex-situ degassing, and tip perturbation, to confirm the gas origin of such observed nanobubbles. We further demonstrated that the formation and growth of nanobubbles could be well controlled by tuning either the applied voltage or the reaction time. Remarkably, we could also monitor the evolution process of nanobubbles, that is, formation, growth, coalescence, as well as the eventual release of merged microbubbles from the HOPG surface.  相似文献   

9.
The present research involves the report on electrochemical deportment of Carbendazim (MBC) at multiwalled carbon nanotubes and calcium‐doped zinc oxide nanoparticles altered nanocomposite based carbon paste electrode (MWCNTs/Ca‐ZnO‐CPE). The modified carbon paste evidenced manifest electrocatalytic behavior for MBC in 0.2 M phosphate buffer (PB) solutions. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), and square wave voltammetry (SWV) techniques were used for the analysis. The working electrode assembly exhibits faster electron transfer of MBC with increase in the peak current. At bare CPE, MBC showed maximum peak current of 1.098 μA at potential 0.7568 V whereas at MWCNT/Ca‐ZnO/CPE peak current of 5.203 μA was observed at potential 0.7541 V in 0.2 M PBS of pH 7.0 at the sweep rate of 50 mV s?1. The synthesized 5 % Ca‐ZnO nanoparticles (NPs) were characterized by X‐ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X‐ray analysis (EDX), and Transmission electron microscopy (TEM) analysis. Various factors influencing the voltammetry of MBC such as pre‐concentration time, pH, sweep rate, and amount of MBC were studied and from the studies we observed that the response was found to be diffusion‐controlled. The concentration variation studies for MBC was watched in the linear working range of 0.01 μM to 0.45 μM and the detection limit was found by SWV technique.  相似文献   

10.
胶束形成的分形研究   总被引:3,自引:0,他引:3  
提出了测定胶束质量分维的两种新方法即粘度法和GPC-LALLS联机法,随后从动态光散射数据计算了离子型胶束SDS的分维,这些实验数值之间能互相印证.建立了放束形成过程的Laplace分形理论,计算得分维D=1.54(二级),作高级计算的分维D=1.67与前面实测值基本相符,另外,从唯象理论角度,讨论了胶束的多重分形及其热力学行为,发现有两个相变点β_c=-4和β_c=-1.并认为这两个转折分别对应着单分子<=>分形胶束<=>经典胶束结构之间的转变.  相似文献   

11.
A fractal analysis is used to model the binding and dissociation kinetics between analytes in solution and estrogen receptors (ER) immobilized on a sensor chip of a surface plasmon resonance (SPR) biosensor. Both cases are analyzed: unliganded as well as liganded. The influence of different ligands is also analyzed. A better understanding of the kinetics provides physical insights into the interactions and suggests means by which appropriate interactions (to promote correct signaling) and inappropriate interactions such as with xenoestrogens (to minimize inappropriate signaling and signaling deleterious to health) may be better controlled. The fractal approach is applied to analyte-ER interaction data available in the literature. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, D(f)) present on the biosensor chip surface. In general, the binding and the dissociation rate coefficients are very sensitive to the degree of heterogeneity on the surface. For example, the binding rate coefficient, k, exhibits a 4.60 order of dependence on the fractal dimension, D(f), for the binding of unliganded and liganded VDR mixed with GST-RXR in solution to Spp-1 VDRE (1,25-dihydroxyvitamin D(3) receptor element) DNA immobilized on a sensor chip surface (Cheskis and Freedman, Biochemistry 35 (1996) 3300-3318). A single-fractal analysis is adequate in some cases. In others (that exhibit complexities in the binding or the dissociation curves) a dual-fractal analysis is required to obtain a better fit. A predictive relationship is also presented for the ratio K(A)(=k/k(d)) as a function of the ratio of the fractal dimensions (D(f)/D(fd)). This has biomedical and environmental implications in that the dissociation and binding rate coefficients may be used to alleviate deleterious effects or enhance beneficial effects by selective modulation of the surface. The K(A) exhibits a 112-order dependence on the ratio of the fractal dimensions for the ligand effects on VDR-RXR interaction with specific DNA.  相似文献   

12.
Polyaniline(PANI)film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte.The potential sweep rates were changed to achieve the PANI film with different thickness and structures.Protective properties of the PANI film for corrosion of stainless steel in 3% NaC1 aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance,reflecting higher inhibition for corrosion of the stainless steel.  相似文献   

13.
Electrochemical deposition from a 0.1 M sodium sulphate solution, containing Cu2+ (adjusted to pH 3 with hydrochloric acid) produced a well defined copper nanoparticle deposit on the surface of a boron doped diamond electrode. Changing conditions such as potential (-0.8, -1.0 and -1.2 V), time (5, 2 and 0.5 s) and concentration of Cu2+ (500, 250 and 100 microM) was found to give copper nanoparticles of varying size and particle density. The electrocatalytic properties of the copper surface towards nitrate reduction were explored. An in-situ copper nanoparticle production method was developed for the detection of nitrate; this involves electrodeposition, followed by linear sweep voltammetry for the reduction of nitrate and then application of a stripping potential to renew the electrode surface. The linear sweep was discovered to have homogenised the size of the nanoparticles but their number density was still dependant on the initial conditions of deposition. Some particles were still present at the surface after the stripping potential had been applied but repetitions of the procedure showed these did not have an effect on subsequent deposits. Optimisation of the method lead to applying a deposition potential of -0.8 V, at a BDD electrode for 5 s in a 0.1 M sodium sulphate solution (pH 3) containing 100 microM Cu2+ followed by a linear sweep at 1 V/s; this yielded a limit of detection of 1.5 microM nitrate. The analytical applicability of the technique was evaluated for nitrate detection in a natural mineral water sample and was found to agree well with that stated by the manufacturer.  相似文献   

14.
The calcium carbonate scale inhibition by two inhibitors, polyacrylic acid (PAA) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), has been studied in two heat transfer systems: recirculating cooling water and pool boiling systems. It is found that PBTCA has a better inhibition effect than PAA under identical conditions. The inhibition effect increases with increasing fluid velocity for the cooling water system, whereas in the presence of inhibitors, the fluid velocity has less effect on the scaling behavior. When the initial surface temperature increases, the inhibition efficiency decreases. In the presence of inhibitors, the scaling behavior is insensitive to the change of surface temperature. The relationship between the inhibition effect and the fractal dimension has also been investigated. The results show that the fractal dimension is higher in the presence of inhibitors. The better the inhibition effect, the higher the fractal dimension. XRD and FTIR analyses demonstrate that for the CaCO3 formed in the pool boiling system, the content of vaterite increases with the increase of inhibition effects. The metastable crystal forms of vaterite and aragonite are stabilized kinetically in the presence of inhibitors. The step morphology has been observed by atomic force microscopy. It is shown that the step space on the CaCO3 surface increases in the presence of inhibitors. Moreover, with the increase in inhibition effect, both the step space and the fractal dimension increase. Step bunching is also found and discussed in this paper.  相似文献   

15.
 In this work a simple program has been developed which simulates the process of particle– cluster aggregation limited by diffusion. All the simulation have been carried out using 2d square lattices with square “particles” having a variable number of active inter-action sites (from 3 to 8) for each particle in order to analyze the effect of such limitation on the fractal dimension of the aggregates. The fractal dimension of such aggregates was calculated by the so-called “box counting” method. It has been shown that there is no change in the value of the fractal dimension (1.70) as the active site number is increased. Instead it appears that there is an average number of active sites of about 2.3 for all the structures no matter how many active interaction sites the particles have. This appears as an interesting result in connection with the aggregation of particles such as renneted casein micelles, which could present differences in the surface density of active sites. Received: 11 February 1997 Accepted: 8 January 1998  相似文献   

16.
The electrochemical polymerization of 0.01 M aniline in 1 M H2SO4 aqueous solution on roughened Au surface modified with a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated by in situ electrochemical surface-enhanced Raman scattering spectroscopy (SERS). The repeat units and possible structures of the electrodeposited polyaniline (PANI) film were proposed; i.e., aniline monomer is coupled in head-to-tail predominately at the C4 of aniline and amine of 4-ATP, and the thin PANI film is orientated vertically to substrate surface. Simultaneous Raman spectra during potential scanning indicate clearly that the ultrathin PANI film (in initial growth of the film) consists of semiquinone radical cation (IP+), para-disubstituted benzene (IP and IP+) and quinine diimine (NP) while it is oxidized, and without quinine diimine and semiquinone radical cation while reduced. Meanwhile, the results confirm that 4-ATP monolayer shows a strong promotion on the electrodeposition of aniline monomer, and a possible polymerization mechanism was proposed.  相似文献   

17.
Ni nanoparticle evaporation onto highly oriented pyrolytic graphite (HOPG), with low and high surface defect densities, has been studied in situ by X-ray photoelectron spectroscopic (XPS) techniques, including binding energy shifts, Auger parameters, and Wagner plots. Ni nucleates at defect sites, whether initially present or those introduced by Ar+ bombardment, with the formation of spherical nanoparticles, which adhere strongly through Ni/HOPG back-bonding. The variation of the C 1s peak intensity with Ni coverage suggests that the photoelectron emission yield may be enhanced at lower Ni coverages, due to Ni nanoparticle-induced electron localization and work function reduction at the HOPG surface, which is evidence of such back-bonding.  相似文献   

18.
Oxygen electrochemical reduction on gold–polyaniline (Au–PANI) porous nanocomposite-modified glassy carbon electrode in basic media was described. The as-prepared Au–PANI porous nanocomposite showed superior tunable activity for electrochemical reduction of oxygen. The specific surface area of Au–PANI porous nanocomposites was evaluated to be about 11.3 m2 g−1 through a convenient voltammetric approach. Rotating ring-disk electrode experiments further demonstrated the number of electrons exchanged in oxygen reduction increased from 2e to 4e with increasing the trigger potential from 300, to 500, 700 mV. The tunable activity in electrochemical reduction of oxygen was achieved as a result of positive potential-induced formation and reduction of Au surface oxide. However, the tunable oxygen reduction reaction is fit for applying potential in a linear positive-going potential sweep. Irreversible ORR tunability was found after a more active surface formed at 700 mV. To optimize the applied potential window on these Au-based porous materials has potential applications such as in electrochemical sensing, fuel cells, or getting rid of the interference from the coexisted substances.  相似文献   

19.
Polyaniline (PANI) nanocomposites incorporating different loadings of graphene and various other carbon nanostructures including carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been synthesized using a surface-initiated polymerization (SIP) method. Transmission electron microscopy (TEM) results indicate that the graphene has been exfoliated into a few layers (typically one, two, and three layers) during polymerization and has been uniformly dispersed in the PANI matrix. The graphene layer dispersion degree is quantified by a free-path spacing measurement (FPSM) method based on the TEM microstructures. The SIP method also demonstrates its feasibility for coating PANI on one-dimensional (1D) CNFs and CNTs without introducing additional surface functional groups. The effects of graphene size, loading level, and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The temperature-dependent conductivity behavior revealed a quasi-3D variable range hopping (VRH) electron transport mechanism for all the nanocomposites. Giant magnetoresistance (GMR) at room temperature is observed in pure PANI, which can be enhanced by the incorporation of a high loading of graphene (5%) due to the π-π stacking-induced efficient electron transport at the PANI/graphene interface. More interestingly, negative permittivity is found in each composite which can be easily tuned by adjusting the filler loading, morphology, and surface functionality.  相似文献   

20.
One-dimensional (1D) ensembles of 2-15 nm diameter gold nanoparticles were prepared using physical vapor deposition (PVD) on highly oriented pyrolytic graphite (HOPG) basal plane surfaces. These 1D Au nanoparticle ensembles (NPEs) were prepared by depositing gold (0.2-0.6 nm/s) at an equivalent thickness of 3-4 nm onto HOPG surfaces at 670-690 K. Under these conditions, vapor-deposited gold nucleated selectively at the linear step edge defects present on these HOPG surfaces with virtually no nucleation of gold particles on terraces. The number density of 2-15 nm diameter gold particles at step edges was 30-40 microm-1. These 1D NPEs were up to a millimeter in length and organized into parallel arrays on the HOPG surface, following the organization of step edges. Surprisingly, the deposition of more gold by PVD did not lead to the formation of continuous gold nanowires at step edges under the range of sample temperature or deposition flux we have investigated. Instead, these 1D Au NPEs were used as nucleation templates for the preparation by electrodeposition of gold nanowires. The electrodeposition of gold occurred selectively on PVD gold nanoparticles over the potential range from 700-640 mV vs SCE, and after optimization of the electrodeposition parameters continuous gold nanowires as small as 80-90 nm in diameter and several micrometers in length were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号