首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider a nonlinear age-structured model, inspired by hematopoiesis modelling, describing the dynamics of a cell population divided into mature and immature cells. Immature cells, that can be either proliferating or non-proliferating, differentiate in mature cells, that in turn control the immature cell population through a negative feedback. We reduce the system to two delay differential equations, and we investigate the asymptotic stability of the trivial and the positive steady states. By constructing a Lyapunov function, the trivial steady state is proven to be globally asymptotically stable when it is the only equilibrium of the system. The asymptotic stability of the positive steady state is related to a delay-dependent characteristic equation. Existence of a Hopf bifurcation and stability switch for the positive steady state is established. Numerical simulations illustrate the stability results.  相似文献   

2.
The existing combination therapy of HIV antiretroviral drugs can lead to the emergence of drug-resistant viruses, and cannot effectively block direct cell-to-cell infections, these factors results in incomplete virus suppression and increased risk of disease progression. In this paper, we formulate an HIV model with two strains representing a drug-sensitive virus and a drug-resistant virus to study the joint mechanism of drug resistance. We first reduce the infection-age model to a system of integro-differential equations with infinite delays. Then the stability of the equilibria and the dynamics of competition between two viruses are studied to illuminate the joint effects of infection-age and two infection routes on the evolution of both drug-sensitive and drug-resistant strains before and during drug treatment. Applying a persistence theorem for infinite dimensional systems, we obtain that the disease is always present when the basic reproduction number is larger than unity. Numerical simulations confirm that the basic reproduction numbers and mutation coefficient are the key threshold parameters for determining the competition results of the two viral strains and indicate the cell-to-cell transmission increases the likelihood that HIV breaks out within the host. Finally, sensitivity analyses suggest that the available combination therapy should be taken once symptoms of resistance appear during drug treatment, and demonstrate that the presence of cell-to-cell transmission attenuates the efficacy of the existing antiretroviral drug treatments.  相似文献   

3.
In this paper, considering full Logistic proliferation of CD4+ T cells, we study an HIV pathogenesis model with antiretroviral therapy and HIV replication time. We first analyze the existence and stability of the equilibrium, and then investigate the effect of the time delay on the stability of the infected steady state. Sufficient conditions are given to ensure that the infected steady state is asymptotically stable for all delay. Furthermore, we apply the Nyquist criterion to estimate the length of delay for which stability continues to hold, and investigate the existence of Hopf bifurcation by using a delay τ as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the main results.  相似文献   

4.
5.
The present paper is concerned with a diffusive population model of Logistic type with an instantaneous density-dependent term and two delayed density-dependent terms and subject to the zero-Dirichlet boundary condition. By regarding the delay as the bifurcation parameter and analyzing in detail the associated eigenvalue problem, the local asymptotic stability and the existence of Hopf bifurcation for the sufficiently small positive steady state solution are shown. It is found that under the suitable condition, the positive steady state solution of the model will become ultimately unstable after a single stability switch (or change) at a certain critical value of delay through a Hopf bifurcation. However, under the other condition, the positive steady state solution of the model will become ultimately unstable after multiple stability switches at some certain critical values of delay through Hopf bifurcations. In addition, the direction of the above Hopf bifurcations and the stability of the bifurcating periodic solutions are analyzed by means of the center manifold theory and normal form method for partial functional differential equations. Finally, in order to illustrate the correction of the obtained theoretical results, some numerical simulations are also carried out.  相似文献   

6.
In this paper, the global properties of a class of human immunodeficiency virus (HIV) models with Beddington–DeAngelis functional response are investigated. Lyapunov functions are constructed to establish the global asymptotic stability of the uninfected and infected steady states of three HIV infection models. The first model considers the interaction process of the HIV and the CD4 + T cells and takes into account the latently and actively infected cells. The second model describes two co‐circulation populations of target cells, representing CD4 + T cells and macrophages. The third model is a two‐target‐cell model taking into account the latently and actively infected cells. We have proven that if the basic reproduction number R0 is less than unity, then the uninfected steady state is globally asymptotically stable, and if R0 > 1, then the infected steady state is globally asymptotically stable. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
We proposed a nutrient-phytoplankton interaction model with a discrete and distributed time delay to provide a better understanding of phytoplankton growth dynamics and nutrient-phytoplankton oscillations induced by delay. Standard linear analysis indicated that delay can induce instability of a positive equilibrium via Hopf bifurcation. We derived the conditions guaranteeing the existence of Hopf bifurcation and tracked its direction and the stability of the bifurcating periodic solutions. We also obtained the sufficient conditions for the global asymptotic stability of the unique positive steady state. Numerical analysis in the fully nonlinear regime showed that the stability of the positive equilibrium is sensitive to changes in delay values under select conditions. Numerical results were consistent with results predicted by linear analysis.  相似文献   

8.
The stability of a diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes is investigated. A threshold property of the local stability is obtained for a boundary steady state, and sufficient conditions of local stability and un-stability for the positive steady state are also obtained. Furthermore, the global asymptotic stability of these two steady states are discussed. Our results reveal the dynamics of this model system.  相似文献   

9.
The stability of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes is investigated. A threshold property of the local stability is obtained for a boundary steady state, and sufficient conditions of local stability and un-stability for the positive steady state are also obtained. Furthermore, the global asymptotic stability of these two steady states are discussed. Our results reveal the dynamics of this model system.  相似文献   

10.
Two models of a density dependent predator-prey system with Beddington-DeAngelis functional response are systematically considered. One includes the time delay in the functional response and the other does not. The explorations involve the permanence, local asymptotic stability and global asymptotic stability of the positive equilibrium for the models by using stability theory of differential equations and Lyapunov functions. For the permanence, the density dependence for predators is shown to give some negative effect for the two models. Further the permanence implies the local asymptotic stability for a positive equilibrium point of the model without delay. Also the global asymptotic stability condition, which can be easily checked for the model is obtained. For the model with time delay, local and global asymptotic stability conditions are obtained.  相似文献   

11.
A mathematical model is proposed to study the role of supplementary self-renewable resource on species population in a two-patch habitat. It is assumed that the density of forest resource biomass is governed by the logistic equation in both the regions but with the different intrinsic growth rate but the same carrying capacity in the entire habitat. It is further assumed that the densities of species population is also governed by the generalized logistic equations in both the regions but with different growth rates and carrying capacities. It is shown that the steady state solutions are positive, monotonic and continuous under both reservoir and no-flux boundary conditions. The linear and non-linear asymptotic stability conditions of non-uniform steady state are compared with the case of the model with and without diffusion in a homogeneous habitat.  相似文献   

12.
This paper is concerned with the existence of traveling waves to a predator–prey model with a spatiotemporal delay. By analyzing the corresponding characteristic equations, the local stability of a positive steady state and each of boundary steady states are established, and the existence of Hopf bifurcation at the positive steady state is also discussed. By constructing a pair of upper–lower solutions and by using the cross‐iteration method as well as the Schauder's fixed‐point theorem, the existence of a traveling wave solution connecting the semi‐trivial steady state and the positive steady state is proved. Numerical simulations are carried out to illustrate the main theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A ratio-dependent predator-prey model with time lag for predator is proposed and analyzed. Mathematical analyses of the model equations with regard to boundedness of solutions, nature of equilibria, permanence, and stability are analyzed. We note that for a ratio-dependent system local asymptotic stability of the positive steady state does not even guarantee the so-called persistence of the system and, therefore, does not imply global asymptotic stability. It is found that an orbitally asymptotically stable periodic orbit exists in that model. Some sufficient conditions which guarantee the global stability of positive equilibrium are given.  相似文献   

15.
In this paper we study the Degn–Harrison system with a generalized reaction term. Once proved the global existence and boundedness of a unique solution, we address the asymptotic behavior of the system. The conditions for the global asymptotic stability of the steady state solution are derived using the appropriate techniques based on the eigen-analysis, the Poincaré–Bendixson theorem and the direct Lyapunov method. Numerical simulations are also shown to corroborate the asymptotic stability predictions.Moreover, we determine the constraints on the size of the reactor and the diffusion coefficient such that the system does not admit non-constant positive steady state solutions.  相似文献   

16.
A huge volume of research has been done for the simplest chemotaxis model (Keller–Segel's minimal model) and its variants, yet, some of the basic issues remain unresolved until now. For example, it is known that the minimal model has spiky steady states that can be used to model the important cell aggregation phenomenon, but the stability of monotone spiky steady states was not shown. In this paper, we derive, first formally and then rigorously, the asymptotic expansion of these monotone steady states, and then we use this fine information on the spike to prove its local asymptotic stability. Moreover, we obtain the uniqueness of such steady states. We expect that the new ideas and techniques for rigorous asymptotic expansion and spectrum analysis presented in this paper will be useful in attacking and hence stimulating research on other more sophisticated chemotaxis models.  相似文献   

17.
In this paper, we propose a spatial heterogeneous viral infection model, where heterogeneous parameters, the intracellular delay and nonlocal diffusion of free virions are considered. The global well-posedness, compactness and asymptotic smoothness of the semiflow generated by the system are established. It is shown that the principal eigenvalue problem of a perturbation of the nonlocal diffusion operator has a principal eigenvalue associated with a positive eigenfunction. The principal eigenvalue plays the same role as the basic reproduction number being defined as the spectral radius of the next generation operator. The existence of the unique chronic-infection steady state is established by the super-sub solution method. Furthermore, the uniform persistence of the model is investigated by using the persistence theory of infinite dimensional dynamical systems. By setting the eigenfunction as the integral kernel of Lyapunov functionals, the global threshold dynamics of the system is established. More precisely, the infection-free steady state is globally asymptotically stable if the basic reproduction number is less than one; while the chronic-infection steady state is globally asymptotically stable if the basic reproduction number is larger than one. Numerical simulations are carried out to illustrate the effects of intracellular delay and diffusion rate on the final concentrations of infected cells and free virions, respectively.  相似文献   

18.
A reaction-diffusion model is presented to describe the microbial continuous culture with diversified growth. The existence of nonnegative solutions and attractors for the system is obtained, the stability of steady states and the steady state bifurcation are studied under three growth conditions. In the case of no growth inhibition or only product inhibition, the system admits one positive constant steady state which is stable; in the case of growth inhibition only by substrate, the system can have two positive constant steady states, explicit conditions of the stability and the steady state bifurcation are also determined. In addition, numerical simulations are given to exhibit the theoretical results.  相似文献   

19.
In this paper, we study a modified Leslie–Gower prey–predator model with Crowley–Martin functional response. The stability and instability of the trivial and semi-trivial solutions was studied by analyzing the eigenvalues of the linearized system. The existence, multiplicity and uniqueness of positive steady state solutions were shown by using bifurcation theory, degree theory, energy estimate and asymptotic behavior analysis. Furthermore, all results were characterized in parameter plane.  相似文献   

20.
In this paper, a diffusive predator-prey system with nonlocal maturation delay is investigated. By analyzing the corresponding characteristic equations, the local stability of each of uniform steady states of the system is discussed. Sufficient conditions are derived for the global stability of the positive steady state and the semi-trivial steady state of the system by using the method of upper–lower solutions and its associated monotone iteration scheme, respectively. The existence of travelling wave solution of the system is established by using the geometric singular perturbation theory. Numerical simulations are carried out to illustrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号