首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
The aim of this article is to give explicit representations for solutions of the Robin boundary value problem for the Cauchy-Riemann operator [image omitted]. In the homogeneous cases we investigate the Robin boundary condition in a more general form. Finally, we give solutions of the corresponding higher-order operators.  相似文献   

2.
该文研究了振荡Robin混合边值齐次化问题解的收敛率.该工作的困难之处在于Robin边值上出现的振荡因子以及边界交叉项的处理.该文利用对偶方法巧妙得对振荡积分进行了估计.文中建立了解的H1和L2收敛率,所得结果明显地依赖于维数.该文可以视为将对偶方法和光滑算子,延拓到处理振荡Robin混合边值问题的情形.  相似文献   

3.
In this paper, we consider the inverse Robin transmission problem with one electrostatic measurement. We prove a uniqueness result for the simultaneous determination of the Robin parameter p, the conductivity k, and the subdomain D, when D is a ball. When D and k are fixed, we prove a uniqueness result and a directional Lipschitz stability estimate for the Robin parameter p. When p and k are fixed, we give an upper bound to the subdomain D. For the reconstruction purposes of the Robin parameter p, we set the inverse problem under an optimization form for a Kohn–Vogelius cost functional. We prove the existence and the stability of the optimization problem. Finally, we show some numerical experiments that agree with the theoretical considerations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper we establish a Hardy inequality for Laplace operators with Robin boundary conditions. For convex domains, in particular, we show explicitly how the corresponding Hardy weight depends on the coefficient of the Robin boundary conditions. We also study several extensions to non-convex and unbounded domains.  相似文献   

5.
We propose a new numerical method for estimating the piecewise constant Robin coefficient in two-dimensional elliptic equation from boundary measurements. The Robin inverse problem is recast into a minimization of an output least-square formulation. A technique based on determining the discontinuous points of the unknown coefficient is suggested, and we investigate the differentiability of the solution and the objective functional with respect to the discontinuous points. Then we apply the Gauss-Newton method for reconstructing the shape of the unknown Robin coefficient. Numerical examples illustrate its efficiency and stability.  相似文献   

6.
We coat a conductor with an insulator and equate the effectiveness of this procedure with the rate at which the body dissipates heat when immersed in an ice bath. In the limit, as the thickness and conductivity of the insulator approach zero, the dissipation rate approaches the first eigenvalue of a Robin problem with a coefficient determined by the shape of the insulator. Fixing the mean of the shape function, we search for the shape with the least associated Robin eigenvalue. We offer exact solutions for balls; for general domains, we establish existence and necessary conditions and report on the results of a numerical method.  相似文献   

7.
We consider a magnetic Schrödinger operator in a planar infinite strip with frequently and non-periodically alternating Dirichlet and Robin boundary conditions. Assuming that the homogenized boundary condition is the Dirichlet or the Robin one, we establish the uniform resolvent convergence in various operator norms and we prove the estimates for the rates of convergence. It is shown that these estimates can be improved by using special boundary correctors. In the case of periodic alternation, pure Laplacian, and the homogenized Robin boundary condition, we construct two-terms asymptotics for the first band functions, as well as the complete asymptotics expansion (up to an exponentially small term) for the bottom of the band spectrum.  相似文献   

8.
We study the Robin problem for the scalar Oseen equation in an open n‐dimensional set with compact Ljapunov boundary. We prescribe two types of Robin boundary conditions, and prove the unique solvability of these problems as well as a representation formula for the solution in form of a scalar Oseen single layer potential. Moreover, we prove the maximum principle for the solution to the Robin problem of the scalar Oseen equation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is \(\mathcal {O}(\tau ^{3-\alpha })\). Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when \(\beta \rightarrow +\infty \) solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is \(\mathcal {O}(h)\). In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.  相似文献   

10.
We propose a reduced multiscale finite element method for a convection-diffusion problem with a Robin boundary condition. The small perturbed parameter would cause boundary layer oscillations, so we apply several adapted grids to recover this defect. For a Robin boundary relating to derivatives, special interpolating strategies are presented for effective approximation in the FEM and MsFEM schemes, respectively. In the multiscale computation, the multiscale basis functions can capture the local boundary layer oscillation, and with the help of the reduced mapping matrix we may acquire better accuracy and stability with a less computational cost. Numerical experiments are provided to show the convergence and efficiency.  相似文献   

11.
ABSTRACT

Considered in this paper is an inverse Robin problem governed by a steady-state diffusion equation. By the Robin inverse problem, one wants to recover the unknown Robin coefficient on an inaccessible boundary from Cauchy data measured on the accessible boundary. In this paper, instead of reconstructing the Robin coefficient directly, we compute first the Cauchy data on the inaccessible boundary which is a linear inverse problem, and then compute the Robin coefficient through Newton's law. For the Cauchy problem, a parameter-dependent coupled complex boundary method (CCBM) is applied. The CCBM has its own merits, and this is particularly true when it is applied to the Cauchy problem. With the introduction of a positive parameter, we can prove the regularized solution is uniformly bounded with respect to the regularization parameter which is a very good property because the solution can now be reconstructed for a rather small value of the regularization parameter. For the problem of computing the Robin coefficient from the recovered Cauchy data, a least square output Tikhonov regularization method is applied to Newton's law to obtain a stable approximate Robin coefficient. Numerical results are given to show the feasibility and effectiveness of the proposed method.  相似文献   

12.
In this paper, we show the existence of at least four nontrivial solutions for a class of semilinear elliptic problems with Robin boundary condition and jumping nonlinearities. Solvability of oscillating equations with Robin boundary condition is also investigated. We prove the conclusions by using sub-super-solution method, Fu?ík spectrum theory, mountain pass theorem in order intervals and Morse theory.  相似文献   

13.
In this paper, we consider the conductivity problem with piecewise‐constant conductivity and Robin‐type boundary condition on the interface of discontinuity. When the quantity of interest is the jump of the conductivity, we perform a local stability estimate for a parameterized non‐monotone family of domains. We give also a quantitative stability result of local optimal solution with respect to a perturbation of the Robin parameter. In order to find an optimal solution, we propose a Kohn–Vogelius‐type cost functional over a class of admissible domains subject to two boundary values problems. The analysis of the stability involves the computation of first‐order and second‐order shape derivative of the proposed cost functional, which is performed rigorously by means of shape‐Lagrangian formulation without using the shape sensitivity of the states variables. © 2016 The Author. Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.  相似文献   

14.
In this paper we study an integral equation method for the exterior Robin problem for the Helmholtz equation where the boundary condition is interpreted in the L2-sense. In particular, we derive a composite integral equation from Green's theorem which is uniquely solvable for all wave numbers.  相似文献   

15.
In this paper, the model of chemical reaction experiments on a tubular catalyst reactor is discussed. We obtain the existence of the solution and discuss its uniqueness. Furthermore, in view of mathematical interest, we also consider the Robin problem for this nonlinear system.  相似文献   

16.
Many cellular and subcellular biological processes can be described in terms of diffusing and chem- ically reacting species (e.g. enzymes). In this paper, we will use reflected and absorbed Brownian motion and stochastic differential equations to construct a closed form solution to one dimensional Robin boundary prob- lems. Meanwhile, we will give a reasonable explanation to the closed form solution from a stochastic point of view. Finally, we will extend the problem to Robin boundary problem with two boundary conditions and give a specific solution by resorting to a stopping time.  相似文献   

17.
The Schwarz method can be used for the iterative solution of elliptic boundary value problems on a large domain Ω. One subdivides Ω into smaller, more manageable, subdomains and solves the differential equation in these subdomains using appropriate boundary conditions. Optimized Schwarz Methods use Robin conditions on the artificial interfaces for information exchange at each iteration, and for which one can optimize the Robin parameters. While the convergence theory of classical Schwarz methods (with Dirichlet conditions on the artificial interface) is well understood, the overlapping Optimized Schwarz Methods still lack a complete theory. In this paper, an abstract Hilbert space version of the Optimized Schwarz Method (OSM) is presented, together with an analysis of conditions for its geometric convergence. It is also shown that if the overlap is relatively uniform, these convergence conditions are met for Optimized Schwarz Methods for two-dimensional elliptic problems, for any positive Robin parameter. In the discrete setting, we obtain that the convergence factor ρ(h) varies like a polylogarithm of h. Numerical experiments show that the methods work well and that the convergence factor does not appear to depend on h.  相似文献   

18.
Recently, Robin claimed to introduce clever innovations (‘wrinkles’) into the mathematics education literature concerning the solutions, and methods of solution, to differential equations. In particular, Robin formulated an iterative scheme in the form of a single integral representation. These ideas were applied to a range of examples involving differential equations. In this article, we respond to Robin's work by subjecting these claims, methods and applications to closer scrutiny. By outlining the historical development of Picard's iterative method for differential equations and drawing on relevant literature, we show that the iterative scheme of Robin has been known for some time. We introduce the need for a ‘space for otherness’ in mathematics education, by drawing on Foucault and posit alternative pedagogical approaches as heterotopias. We open a space for otherness and make it concrete by considering alternative perspectives to Robin's work. On a practical note, we see the importance of history and theory to be part of the pedagogical conversation when teaching and learning iterative methods; and provide a set of Maple code with which students and teachers can experiment, explore and learn. We also advocate more broadly for educators to open a space for otherness in their own pedagogical practice.  相似文献   

19.
We study the asymptotic behavior of the heat content on a compact Riemannian manifold with boundary and with singular specific heat and singular initial temperature distributions imposing Robin boundary conditions. Assuming the existence of a complete asymptotic series we determine the first three terms in that series. In addition to the general setting, the interval is studied in detail as are recursion relations among the coefficients and the relationship between the Dirichlet and Robin settings.  相似文献   

20.
We are interested in the inverse problem of recovering a Robin coefficient defined on some non-accessible part of the boundary from available data on another part of the boundary in the non-stationary Stokes system. We prove a Lipschitz stability estimate under the a priori assumption that the Robin coefficient lives in some compact and convex subset of a finite dimensional vectorial subspace of the set of continuous functions. To do so, we use a theorem proved by L. Bourgeois and which establishes Lipschitz stability estimates for a class of inverse problems in an abstract framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号