共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim of this paper is to provide new examples of H?rmander operators L{\mathcal{L}} to which a Lie group structure can be attached making L{\mathcal{L}} left invariant. Our class of examples contains several subclasses of operators appearing in literature and arising both in
theoretical and in applied fields: evolution Kolmogorov operators, degenerate Ornstein–Uhlenbeck operators, Mumford and Fokker–Planck
operators, Ornstein–Uhlenbeck operators with time-dependent periodic coefficients. Our examples basically come from exponential
of matrices, as well as from linear constant-coefficient ODE’s, in
\mathbbR{\mathbb{R}} or in
\mathbbC{\mathbb{C}} . Furthermore, we describe how these groups can be combined together to obtain new structures and new operators, also having
an interest in the applied field. 相似文献
2.
《Chaos, solitons, and fractals》2001,12(10):1873-1886
It is shown that the fractional Fokker–Planck equations proposed recently in the literature (by merely substituting time fractional derivative for time derivative) give rise to some problems in the sense that they provide probability densities which may have negative values. In the same way, one shows that the Kramers–Moyal equation can be thought of as related to fractal processes, but it is well known that it yields also negative densities. It seems that the key of this trouble is the misuse of the Chapman Kolmogorov equation on the one hand, and of the fractional difference on the other hand. In fact, there is a complete identification between Kramers–Moyal equation and Fokker–Planck equation of fractional order. After a careful analysis, one arrives at the conclusion that the fractional derivative in Liouville–Riemann (L–R) sense should be replaced by a slightly finite fractional derivative which involves finite difference, whilst L–R fractional derivative refers to difference of infinite order. The new fractional Fokker–Planck equation so obtained is displayed, and its solution via separation of variables is outlined. It seems that there is no alternative but to work via non-standard analysis, that is to say infinitesimal discretization in time. 相似文献
3.
An efficient framework for the optimal control of probability density functions (PDFs) of multidimensional stochastic processes is presented. This framework is based on the Fokker–Planck equation that governs the time evolution of the PDF of stochastic processes and on tracking objectives of terminal configuration of the desired PDF. The corresponding optimization problems are formulated as a sequence of open-loop optimality systems in a receding-horizon control strategy. Many theoretical results concerning the forward and the optimal control problem are provided. In particular, it is shown that under appropriate assumptions the open-loop bilinear control function is unique. The resulting optimality system is discretized by the Chang–Cooper scheme that guarantees positivity of the forward solution. The effectiveness of the proposed computational framework is validated with a stochastic Lotka–Volterra model and a noised limit cycle model. 相似文献
4.
Vladimir Bogachev Giuseppe Da Prato Michael Röckner 《Journal of Evolution Equations》2010,10(3):487-509
We consider a stochastic differential equation in a Hilbert space with time-dependent coefficients for which no general existence
and uniqueness results are known. We prove, under suitable assumptions, the existence and uniqueness of a measure valued solution,
for the corresponding Fokker–Planck equation. In particular, we verify the Chapman–Kolmogorov equations and get an evolution
system of transition probabilities for the stochastic dynamics informally given by the stochastic differential equation. 相似文献
5.
New results concerning the local integrability of any order and continuity of solution densities of Fokker–Planck–Kolmogorov equations with nondifferentiable coefficients are obtained. 相似文献
6.
A Fokker–Planck equation on fractal curves is obtained, starting from Chapmann–Kolmogorov equation on fractal curves. This is done using the recently developed calculus on fractals, which allows one to write differential equations on fractal curves. As an important special case, the diffusion and drift coefficients are obtained, for a suitable transition probability to get the diffusion equation on fractal curves. This equation is of first order in time, and, in space variable it involves derivatives of order α, α being the dimension of the curve. An exact solution of this equation with localized initial condition shows departure from ordinary diffusive behavior due to underlying fractal space in which diffusion is taking place and manifests a subdiffusive behavior. We further point out that the dimension of the fractal path can be estimated from the distribution function. 相似文献
7.
8.
Luigi Ambrosio Giuseppe Savaré Lorenzo Zambotti 《Probability Theory and Related Fields》2009,145(3-4):517-564
We study Markov processes associated with stochastic differential equations, whose non-linearities are gradients of convex functionals. We prove a general result of existence of such Markov processes and a priori estimates on the transition probabilities. The main result is the following stability property: if the associated invariant measures converge weakly, then the Markov processes converge in law. The proofs are based on the interpretation of a Fokker–Planck equation as the steepest descent flow of the relative entropy functional in the space of probability measures, endowed with the Wasserstein distance. 相似文献
9.
In this paper, we consider the Cauchy problem of semi-linear degenerate backward stochastic partial differential equations (BSPDEs) under general settings without technical assumptions on the coefficients. For the solution of semi-linear degenerate BSPDE, we first give a proof for its existence and uniqueness, as well as regularity. Then the connection between semi-linear degenerate BSPDEs and forward–backward stochastic differential equations (FBSDEs) is established, which can be regarded as an extension of the Feynman–Kac formula to the non-Markovian framework. 相似文献
10.
11.
Julien Bect 《Nonlinear Analysis: Hybrid Systems》2010,4(2):357-370
A general formulation of the Fokker–Planck–Kolmogorov (FPK) equation for stochastic hybrid systems is presented, within the framework of Generalized Stochastic Hybrid Systems (GSHSs). The FPK equation describes the time evolution of the probability law of the hybrid state. Our derivation is based on the concept of mean jump intensity, which is related to both the usual stochastic intensity (in the case of spontaneous jumps) and the notion of probability current (in the case of forced jumps). This work unifies all previously known instances of the FPK equation for stochastic hybrid systems, and provides GSHS practitioners with a tool to derive the correct evolution equation for the probability law of the state in any given example. 相似文献
12.
《Chaos, solitons, and fractals》2000,11(5):791-798
By using the definition of the characteristic function and Kramers–Moyal Forward expansion, one can obtain the Fractional Fokker–Planck Equation (FFPE) in the domain of fractal time evolution with a critical exponent α (0<α⩽1). Two different classes of fractional differential operators, Liouville–Riemann (L–R) and Nishimoto (N) are used to represent the fractal differential operators in time. By applying the technique of eigenfunction expansion to get the solution of FFPE, one finds that the time part of eigenfunction expansion in terms of L–R represents the waiting time density Ψ(t), which gives the relation between fractal time evolution and the theory of continuous time random walk (CTRW). From the principle of maximum entropy, the structure of the distribution function can be known. 相似文献
13.
A. I. Noarov 《Theoretical and Mathematical Physics》2016,189(3):1796-1805
We investigate the Fokker–Planck equation on an infinite cylindrical surface and in an infinite strip with reflecting boundary conditions, prove the existence of a positive (not necessarily integrable) solution, and derive various conditions on the vector field f that are sufficient for the existence of a solution that is the probability density. In particular, these conditions are satisfied for some vector fields f with integral trajectories going to infinity. 相似文献
14.
We describe conditions on non-gradient drift diffusion Fokker–Planck equations for its solutions to converge to equilibrium with a uniform exponential rate in Wasserstein distance. This asymptotic behaviour is related to a functional inequality, which links the distance with its dissipation and ensures a spectral gap in Wasserstein distance. We give practical criteria for this inequality and compare it to classical ones. The key point is to quantify the contribution of the diffusion term to the rate of convergence, in any dimension, which to our knowledge is a novelty. 相似文献
15.
16.
17.
It is shown that the solution of a nonlocal Fokker–Planck equation is smooth with respect to both time and space variable whenever the divergence of the smooth drift has a lower bound. 相似文献
18.
We establish sharp long time asymptotic behaviour for a family of entropies to defective Fokker–Planck equations and show that, much like defective finite dimensional ODEs, their decay rate is an exponential multiplied by a polynomial in time. The novelty of our study lies in the amalgamation of spectral theory and a quantitative non-symmetric hypercontractivity result, as opposed to the usual approach of the entropy method. 相似文献
19.
Xicheng Zhang 《Probability Theory and Related Fields》2007,137(3-4):519-539
Under the bounded geometry assumption on Riemannian manifold M, a variational approximation for Fokker–Planck equation on M is constructed by the scheme of Jordan et al. in SIAM J Math Anal 29(1):1–17, 1998. Moreover, the uniqueness and global L p -estimate of the solution for 1 < p < dim(M)/(dim(M) ? 1) are obtained for a broad class of potential. 相似文献
20.
《Chaos, solitons, and fractals》2001,12(10):1929-1935