首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
We study a time dependent eddy current equation for the magnetic field HH accompanied with a non-linear degenerate boundary condition (BC), which is a generalization of the classical Silver–Müller condition for a non-perfect conductor. More exactly, the relation between the normal components of electrical EE and magnetic HH fields obeys the following power law ν×E=ν×(|H×ν|α-1H×ν)ν×E=ν×(|H×ν|α-1H×ν) for some α∈(0,1]α(0,1]. We establish the existence and uniqueness of a weak solution in a suitable function space under the minimal regularity assumptions on the boundary ΓΓ and the initial data H0H0. We design a non-linear time discrete approximation scheme based on Rothe's method and prove convergence of the approximations to a weak solution. We also derive the error estimates for the time-discretization.  相似文献   

2.
We study a full Maxwell's system accompanied with a non-linear degenerate boundary condition, which represents a generalization of the classical Silver-Müller condition for a non-perfect conductor. The relationship between the normal components of electric E and magnetic H field obeys the following power law ν×H=ν×(|E×ν|α−1E×ν) for some α∈(0,1]. We establish the existence and uniqueness of a weak solution in a suitable function spaces under the minimal regularity assumptions on the boundary Γ and the initial data E0 and H0. We design a non-linear time discrete approximation scheme and prove convergence of the approximations to a weak solution. We also derive the error estimates for the time discretization. As a next step we study the fully discrete problem using curl-conforming edge elements and derive the corresponding error estimates. Finally we present some numerical experiments.  相似文献   

3.
In this paper, we study a numerical scheme to solve coupled Maxwell's equations with a nonlinear conductivity. This model plays an important role in the study of type‐II superconductors. The approximation scheme is based on backward Euler discretization in time and mixed conforming finite elements in space. We will prove convergence of this scheme to the unique weak solution of the problem and develop the corresponding error estimates. As a next step, we study the stability of the scheme in the quasi‐static limit ? → 0 and present the corresponding convergence rate. Finally, we support the theory by several numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The nonlinear grating problem is modeled by Maxwell's equations with transparent boundary conditions. The nonlocal boundary operators are truncated by taking sufficiently many terms in the corresponding expansions. A finite element method with the truncation operators is developed for solving the nonlinear grating problem. The two posterior error estimates are established. The a posterior error estimate consists of two parts: finite element discretization error and the truncation error of the nonlocal boundary operators. In particular, the truncation error caused by truncation operations is exponentially decayed when the parameter N is increased. Numerical experiment is included to illustrate the efficiency of the method. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1101–1118, 2015  相似文献   

6.
利用能量法证明了具耗散边界条件和时间依赖系数的非线性波方程的能量指数衰减性.  相似文献   

7.
This article is devoted to the study of a fully discrete A ‐ finite element method to solve nonlinear Maxwell's equations based on backward Euler discretization in time and nodal finite elements in space. The nonlinearity is owing to a field‐dependent conductivity with the power‐law form . We design a nonlinear time‐discrete scheme for approximation in suitable function spaces. We show the well‐posedness of the problem, prove the convergence of the semidiscrete scheme based on the boundedness of the second derivative in the dual space and derive its error estimate. The Minty–Browder technique is introduced to obtain the convergence of the nonlinear term. Finally, we discuss the error estimate for the fully discretized problem and support the theoretical result by two numerical experiments. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2083–2108, 2014  相似文献   

8.
This paper is concerned with viscosity solutions for a class of degenerate quasilinear parabolic equations in a bounded domain with homogeneous Dirichlet boundary condition. The equation under consideration arises from a number of practical model problems including reaction–diffusion processes in a porous medium. The degeneracy of the problem appears on the boundary and possibly in the interior of the domain. The goal of this paper is to establish some comparison properties between viscosity upper and lower solutions and to show the existence of a continuous viscosity solution between them. An application of the above results is given to a porous-medium type of reaction–diffusion model which demonstrates some distinctive properties of the solution when compared with the corresponding semilinear problem.  相似文献   

9.
10.
Dual‐phase‐lagging (DPL) equation with temperature jump boundary condition (Robin's boundary condition) shows promising for analyzing nanoheat conduction. For solving it, development of higher‐order accurate and unconditionally stable (no restriction on the mesh ratio) numerical schemes is important. Because the grid size may be very small at nanoscale, using a higher‐order accurate scheme will allow us to choose a relative coarse grid and obtain a reasonable solution. For this purpose, recently we have presented a higher‐order accurate and unconditionally stable compact finite difference scheme for solving one‐dimensional DPL equation with temperature jump boundary condition. In this article, we extend our study to a two‐dimensional case and develop a fourth‐order accurate compact finite difference method in space coupled with the Crank–Nicolson method in time, where the Robin's boundary condition is approximated using a third‐order accurate compact method. The overall scheme is proved to be unconditionally stable and convergent with the convergence rate of fourth‐order in space and second‐order in time. Numerical errors and convergence rates of the solution are tested by two examples. Numerical results coincide with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1742–1768, 2015  相似文献   

11.
In this article, we study the Drude models of Maxwell's equations in three‐dimensional metamaterials. We derive new global energy‐tracking identities for the three dimensional electromagnetic problems in the Drude metamaterials, which describe the invariance of global electromagnetic energy in variation forms. We propose the time second‐order global energy‐tracking splitting FDTD schemes for the Drude model in three dimensions. The significant feature is that the developed schemes are global energy‐preserving, unconditionally stable, second‐order accurate both in time and space, and computationally efficient. We rigorously prove that the new schemes satisfy these energy‐tracking identities in the discrete form and the discrete variation form and are unconditionally stable. We prove that the schemes in metamaterials are second order both in time and space. The superconvergence of the schemes in the discrete H1 norm is further obtained to be second order both in time and space. Their approximations of divergence‐free are also analyzed to have second‐order accuracy both in time and space. Numerical experiments confirm our theoretical analysis results. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 763–785, 2017  相似文献   

12.
In this paper, we consider the evolution dam problem (P) related to a compressible fluid flow governed by a generalized nonlinear Darcy's law with Dirichlet boundary conditions on some part of the boundary. We establish existence of a solution for this problem. We choose a convenient regularized problem (P?) for which we prove the existence and uniqueness of solution using the comparison Lemma 2.1 and the Schauder fixed‐point theorem. Then, we pass to the limit, when ? goes to 0, to get a solution for our problem. Moreover, we will see another approach for the incompressible case where we pass to the limit in (P), when α goes to 0, to get a solution.  相似文献   

13.
In this paper, we consider a class of systems governed by time-delayed, second-order, linear, parabolic partial differential equations with first boundary conditions. The existence and uniqueness of solutions of this class of systems are established in Theorem 3.2. A necessary condition for optimality for the corresponding controlled system is presented in Theorem 5.1. For the proof of this theorem, we develop several preparatory results in Sections 2, 3, and 4.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号