首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper is concerned with the problem of robust reliable control for a class of uncertain stochastic switched nonlinear systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system. A design scheme for the reliable controller is proposed to guarantee almost surely exponential stability for stochastic switched systems with actuator failures, and the dwell time approach is utilized for the stability analysis. Then the approach is extended to take into account stochastic switched system with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical example is employed to verify the proposed method.  相似文献   

3.
This paper investigates the problem of robust reliable control for a class of uncertain switched neutral systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system and the parameter uncertainties are assumed to be norm-bounded. A state feedback controller is proposed to guarantee exponential stability and reliability for switched neutral systems, and the dwell time approach is utilized for the stability analysis and controller design. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

4.
5.
The stochastic finite-time boundedness problem is considered for a class of uncertain Markovian jumping neural networks (MJNNs) that possess partially known transition jumping parameters. The transition of the jumping parameters is governed by a finite-state Markov process. By selecting the appropriate stochastic Lyapunov–Krasovskii functional, sufficient conditions of stochastic finite time boundedness of MJNNs are presented and proved. The boundedness criteria are formulated in the form of linear matrix inequalities and the designed algorithms are described as optimization ones. Simulation results illustrate the effectiveness of the developed approaches.  相似文献   

6.
A problem of quantized state feedback quadratic mean-square stabilization of discrete-time stochastic processes under Markovian switching and multiplicative noise is considered. A static quantizer is used in the feedback channel and the jump Markovian switching is modeled by a discrete-time Markov chain. The control input is simultaneously applied to both the rate vector and the diffusion term. It is shown that the coarsest quantization density that permits quadratic mean-square stabilization of this system is achieved with the use of a logarithmic quantizer, and the coarsest quantization density is determined by an algebraic Riccati equation, which is also the solution to a special linear stochastic Markovian switching control system. Also, sufficient conditions for exponential mean-square stabilization of such systems are also explored. An example is given to demonstrate the obtained results.  相似文献   

7.
In this paper, the problems of stochastic stability and robust control for a class of uncertain sampled-data systems are studied. The systems consist of random jumping parameters described by finite-state semi-Markov process. Sufficient conditions for stochastic stability or exponential mean square stability of the systems are presented. The conditions for the existence of a sampled-data feedback control and a multirate sampled-data optimal control for the continuous-time uncertain Markovian jump systems are also obtained. The design procedure for robust multirate sampled-data control is formulated as linear matrix inequalities (LMIs), which can be solved efficiently by available software toolboxes. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed techniques.  相似文献   

8.
The paper deals with the problem of state feedback controller design for singular positive Markovian jump systems with partly known transition rates. First, by applying an appropriate linear co-positive type Lyapunov–Krasovskii function, stochastic stability of the underlying systems is discussed. Based on the results obtained, a state feedback controller is constructed such that the closed-loop singular Markovian jump system is regular, impulse-free, positive and stochastically stable. All the provided conditions are based on a reliable computational approach in linear programming. Finally, an example is given to demonstrate the validity of the main results.  相似文献   

9.
In this paper, the problem of stochastic stabilization for a class of discrete-time singular Markovian jump systems with time-varying delay is investigated. By using the Lyapunov functional method and delay decomposition approach, improved delay-dependent sufficient conditions are presented, which guarantee the considered systems to be regular, causal and stochastically stabilizable. Finally, some numerical examples are provided to illustrate the effectiveness of the obtained methods.  相似文献   

10.
In this paper, some criteria on pth moment stability and almost sure stability with general decay rates of stochastic differential delay equations with Poisson jumps and Markovian switching are obtained. Two examples are presented to illustrate our theories.  相似文献   

11.
In this paper, a class of stochastic pantograph equations with Markovian switching is considered. The main purpose is to investigate the convergence of the Euler method of the equations. It is proved that the Euler approximation solution converge to the analytic solution in probability under weaker conditions. An example is provided to illustrate our theory.  相似文献   

12.
13.
In this paper, the problem of the robust stabilization for a class of uncertain linear dynamical systems with time-varying delay is considered. By making use of an algebraic Riccati equation, we derive some sufficient conditions for robust stability of time-varying delay dynamical systems with unstructured or structured uncertainties. In our approach, the only restriction on the delay functionh(t) is the knowledge of its upper boundh . Some analytical methods are employed to investigate these stability conditions. Since these conditions are independent of the delay, our results are also applicable to systems with perturbed time delay. Finally, a numerical example is given to illustrate the use of the sufficient conditions developed in this paper.  相似文献   

14.
In this paper, we aim to study robust exponential stabilization for a large-scale uncertain impulsive system with coupling time-delays. Furthermore, we also provide an estimation of the rate of convergence of exponential stabilization. By utilizing the Lyapunov method and Razumikhin technique, we shall design the feedback hybrid controllers in terms of linear matrix inequalities under which the robust exponential stability is achieved for a closed-loop large-scale uncertain impulsive system with coupling time-delays. Moreover, we shall also use the results obtained to design impulsive controllers for a large-scale uncertain continuous system under which the closed-loop continuous system achieves robust and exponential stability. To illustrate our results, one example is solved.  相似文献   

15.
This paper is devoted to investigating the problem of robust sliding mode control for a class of uncertain Markovian jump linear time-delay systems with generally uncertain transition rates (GUTRs). In this GUTR model, each transition rate can be completely unknown or only its estimate value is known. By making use of linear matrix inequalities technique, sufficient conditions are presented to derive the linear switching surface and guarantee the stochastic stability of sliding mode dynamics. A sliding mode control law is developed to drive the state trajectory of the closed-loop system to the specified linear switching surface in a finite-time interval in spite of the existing uncertainties, time delays and unknown transition rates. Finally, an example is presented to verify the validity of the proposed method.  相似文献   

16.
In this paper, a class of stochastic age-dependent population equations with Markovian switching is considered. The main aim of this paper is to investigate the convergence of the numerical approximation of stochastic age-dependent population equations with Markovian switching. It is proved that the numerical approximation solutions converge to the analytic solutions of the equations under the given conditions. An example is given for illustration.  相似文献   

17.
In this paper, the problem of stochastic stability criterion of Markovian jumping neural networks with mode-dependent time-varying delays and partially known transition rates is considered. Some new delay-dependent stability criteria are derived by choosing a new class of Lyapunov functional. The obtained criteria are less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

18.
This paper studies robust stability of uncertain impulsive dynamical systems. By introducing the concepts of uniformly positive definite matrix functions and Hamilton–Jacobi/Riccati inequalities, several criteria on robust stability, robust asymptotic stability and robust exponential stability are established. An example is also worked through to illustrate our results.  相似文献   

19.
In this paper, we are concerned with the stochastic differential delay equations with Markovian switching (SDDEwMSs). As stochastic differential equations with Markovian switching (SDEwMSs), most SDDEwMSs cannot be solved explicitly. Therefore, numerical solutions, such as EM method, stochastic Theta method, Split-Step Backward Euler method and Caratheodory’s approximations, have become an important issue in the study of SDDEwMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEwMSs in the sense of the Lp-norm when the drift and diffusion coefficients are Taylor approximations.  相似文献   

20.
In this paper, the problem of exponential stabilization for a class of linear systems with time-varying delay is studied. The time delay is a continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, but the delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals combined with Leibniz-Newton’s formula, new delay-dependent sufficient conditions for the exponential stabilization of the systems are first established in terms of LMIs. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号