首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
A transparent glass with the composition 60B2O3–30Li2O–10Nb2O5 (mol%) was prepared by the melt quenching technique. The glass was heat-treated with and without the application of an external electric field. The as-prepared sample was heat-treated (HT) at 450, 500 and 550 °C and thermoelectric treated (TET) at 500 °C. The following electric fields were used: 50 kV/m and 100 kV/m. Differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, dc and ac conductivity, as a function of temperature, were used to investigate the glass and glass-ceramics properties. LiNbO3 crystals were detected, by XRD, in the 500 °C HT, 550 °C HT and 500 °C TET samples. The presence of an external electric field, during the heat-treatment process, improves the formation of LiNbO3 nanocrystals at lower temperatures. However, in the 550 °C HT and in the TET samples, Li2B4O7 was also detected. The value of the σdc decreases with the rise of the applied field, during the heat-treatment. This behavior can indicate an increase in the fraction of the LiNbO3 crystallites present in these glass samples. The dc and ac conduction processes show dependence on the number of the ions inserted in the glass as network modifiers.The Raman analysis suggests that the niobium ions are, probably, inserted in the glass matrix as network formers.These results reflect the decisive effect of temperature and electric field applied during the thermoelectric treatment in the structure and electric properties of glass-ceramics.  相似文献   

2.
《Journal of Non》1986,81(3):337-350
Glass-forming tendencies of melts in the systems (alkali oxide or alkaline earth oxide)-Nb2O5Ga2O3 were examined by an ordinary crucible-melting technique. The glass-forming tendency increased with increasing radius of alkali or alkaline earth ion in the respective groups. Clear glasses were obtained on a practically useful scale in the systems (K2O or Cs2O)Nb2O5Ga2O3 and (SrO or BaO)Nb2O5Ga2O3. The infrared absorption spectra indicated that the Ga3+ ions in the glasses are tetrahedrally coordinated with oxygen ions. The glasses showed high optical transmissions from the ultraviolet region of 0.3 μm in wavelength to the infrared region of 7 μm, except for a region near 3 μm. The absorption near 3 μm, which is attributed to OH vibration, could be eliminated by replacing part of the carbonate in the raw materials with a fluoride and melting the mixture of raw materials in a dry N2 gas atmosphere. The glass-forming tendencies of the melts and the optical transmissions of the glasses were discussed in terms of the glass structure.  相似文献   

3.
A.J. Parsons  C.D. Rudd 《Journal of Non》2008,354(40-41):4661-4667
The glass forming region of the system P2O5–Na2O–Fe2O3 was determined, using phosphate salts as precursor materials. The glasses were produced in non-wetting gold/platinum crucibles in order to avoid contamination. Glass formation was confirmed using XRD and the final composition determined using EDX. The glass forming region was found to be relatively short at 50% P2O5 content in comparison to both lower and higher P2O5 content. As expected, the inclusion of Fe2O3 had a significant effect on both glass transition temperature and density with a peak seen at around 30 mol% Fe2O3. This coincides with previously reported abrupt structural changes in the glass. The inclusion of Na2O has little effect on the glass transition temperature but causes a small increase in density.  相似文献   

4.
The atomic structures of two V2O5–P2O5 glasses and vitreous (v-) V2O5 were investigated by X-ray and neutron diffraction. The V=O double bond is a common characteristic of the VOn units that constitute the structures of the glasses. VO5 square pyramids with elongated bonds of ~ 0.190 nm to the pyramidal base are found for the 50V2O5–50P2O5 glass. These weaker V–O bonds are balanced in V–O–P bridges by overbonded P–O bonds. The V(IV) sites, which account for 19.7% and 35.2% of the total V sites in the 73V2O5–27P2O5 and 50V2O5–50P2O5 glasses, respectively, form similar pyramids in agreement with the structure of crystalline (VO)2P2O7. The short-range structure of v-V2O5 and the 73V2O5-27P2O5 glass is formed of mixtures of VO5 and VO4 pyramids. A significant amount of V···O distances > 0.22 nm found for all glasses belong either to linkages V=O···V or to three-coordinated O sites.  相似文献   

5.
The structure of glasses within the system Li2O–Al2O3–B2O3–P2O5 has been studied through 31P, 11B and 27Al Nuclear Magnetic Resonance, and the effect of Al2O3 substitution by B2O3 and P2O5 network formers on the structure and properties investigated for a constant Li2O content. Multinuclear NMR results reveal that substitution of Al2O3 for B2O3 and P2O5 network formers in a glass with composition 50Li2O·15B2O3·35P2O5 produces a change in boron environment from four-fold to three-fold coordination. Meanwhile aluminum can be present in four-, five- and six-fold coordinations a higher amount of Al(IV) groups is found for increasing alumina contents. The behavior of the glass transition temperature and electrical conductivity of the glasses has been interpreted as a function of the structural changes induced in the glass network when alumina is substituted for B2O3, P2O5 or both. Small additions of alumina produce a drastic increase in glass transition temperature, while it does not change for [Al2O3] greater than 3 mol.%. However, the electrical conductivity shows very different behavior depending on the type of substitution; it can remain constant when B2O3 content decreases or sharply decrease when P2O5 is substituted by Al2O3, which is attributed to a higher amount of BO3 and phase separation.  相似文献   

6.
Amorphous nanoheterogeneities of the size less than 100 Å have been formed in glasses of the Li2O–Nb2O5–SiO2 (LNS) and Li2O–ZnO–Nb2O5–SiO2 (LZNS) systems at the initial stage of phase separation and examined by transmission electron microscopy, small-angle X-ray and neutron scattering. Both LNS and LZNS nanoheterogeneous glasses exhibit second harmonic generation (SHG) even when they are characterized by fully amorphous X-ray diffraction (XRD) patterns. Chemical differentiation and ordering of glass structure during heat treatments at appropriate temperatures higher Tg lead to drastic increase of SHG efficiency of LNS glasses contrary to LZNS ones in the frame of amorphous state of samples. Following heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 and non-polar LiZnNbO4 in the LNS and LZNS glasses, respectively. Taking into account similar polarizability of atoms in LNS and LZNS glasses, the origin of the principal difference in the second-order optical non-linearity of amorphous LNS and LZNS samples is proposed to connect predominantly with the internal structure of formed nanoheterogeneities and with their polarity. Most probably, amorphous nanoheterogeneities in glasses may be characterized with crystal-like structure of polar (LiNbO3) phase initiating remarkable SHG efficiency or non-polar (LiZnNbO4) phase, which do not initiate SHG activity. It gives an opportunity to vary SHG efficiency of glasses in a wide rage without remarkable change of their transparency by chemical differentiation process at the initial stage of phase separation when growth of nanoheterogeneities is ‘frozen’. At higher temperatures, LiNbO3 crystals identified by XRD precipitate in LNS glasses initiating even more increase of SHG efficiency but visually observable transparency is impaired.  相似文献   

7.
Cobalt ferrite–poly(N-vinyl-2-pyrrolidone) nanocomposites were prepared by drying a dispersion of cobalt ferrite (CoFe2O4) nanoparticles and poly(N-vinyl-2-pyrrolidone). Magnetic measurements indicate a superparamagnetic behavior. Zero-field-cooling magnetization experiments at 100 Oe show different trends depending on the CoFe2O4 nanoparticles size. For the smaller ones (3.9 nm), the blocking temperatures shift to lower temperatures with increasing concentration; however, this shift is not observed for the larger ones (6.6 nm). These differences can be related to the anisotropy constant of the CoFe2O4 nanoparticles and the interparticle dipolar interactions.  相似文献   

8.
A novel Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fiber is prepared. The thermal properties including differential thermal analysis (DTA) and viscosity measurement of the glass were presented. The tensile strength of the glass fiber is measured. The reaction of the glass fibers in the SBF solution is characterized by XRD, FTIR and SEM. XRD and FTIR indicate that the carbonate hydroxyapatite has formed rapidly on the glass. Cell attachment, spreading and proliferation on the glass are determined by MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay method using Human osteosarcoma MG-63 cells. The bioactivity and biocompatibility of the glass fiber make it a good potential prospect in the field of tissue engineering.  相似文献   

9.
TeO2–WO3 (TW), TeO2–WO3–La2O3 (TWL), TeO2–WO3–La2O3–Bi2O3 (TWLB) and TeO2–ZnO–Na2O–Bi2O3 (TZNB) glasses were produced by high-purity oxide mixtures melting in platinum or gold crucible at 800 °C in the atmosphere of purified oxygen. The total content of Cu, Mn, Fe, Co and Ni impurities was not more than 0.1–0.5 ppm wt in the initial oxides and glasses. The stability of TZNB glasses to crystallization, characterized by (Tx ? Tg) value more than 150 °C, was demonstrated by DSC measurements at heating rate 10 K/min. In the case of La2O3-containing glasses the thermal effects of both crystallization and fusion of the crystallized phases were not observed. The hydroxyl groups absorption coefficients of pure tellurite glasses at the maximum of the absorption band (λ ~ 3 μm) were in the region of 0.012–0.001 cm?1. The optical absorption losses, measured by the laser calorimetry method at λ = 1.56 and 1.97 μm, did not exceed 100 dB/km.  相似文献   

10.
Ferrimagnetic glass–ceramics were prepared in the systems Fe2O3 CoO MnO2 (S1), Fe2O3 NiO MoO3 (S2) and Fe2O3 CoO V2O5 (S3). Small amount of H3BO4 was added to make the melting process easier. The samples were characterized using DTA, XRD, TEM and EDX. Sequence of crystallization was studied by applying heat-treatment at 800 and 1000 °C for 4 h. CoFe2O4 with crystallite sizes of ≈ 14–20 nm was successfully prepared beside FeCoOBO3 and Co3BO5 in S1. NiMoO4, (FeNi2)O2(BO3) and NiO with crystallite size ≈ 56–79 nm were crystallized in S2. CoFe2O4, FeCoOBO3 and Co3BO5 with crystallite size ≈ 6–8 nm were crystallized in S3. Magnetic hysteresis cycles were analyzed with a maximum applied field of 20 kOe at room temperature. From the obtained hysteresis loops Ms records higher values for S1 and S3 and lower value for S2, while coercivity reach maximum for S2. The variable, magnetic, data range gives a wide range for different applications.  相似文献   

11.

Abstract  

The imidazolyl derived complex N,N′-butylenebis(imidazole):(oxalic acid)0.5 was prepared and structurally characterized by X-ray crystallography. The title compound crystallizes in the triclinic, space group P-1, with a = 4.4373(9) ?, b = 12.882(3) ?, c = 15.319(3) ?, α = 99.91(3)°, β = 94.53(3)°, γ = 98.72(3)°, V = 847.7(3) ?3, Z = 2. Two N,N′-butylenebis(imidazole) and two oxalic acid molecules form an annulus via intermolecular hydrogen bonds, with internal dimensions of about 7.1 × 11.1 ?. Neighboring annuluses were connected by N–H···O and C–H···O interactions to form 1D double chain structure. Adjacent double chains stacked just above each other along the a-axis direction, this arrangement of the double chains leads the extended supramolecular architecture to show a three-dimensional porous network.  相似文献   

12.
Glasses with composition xLi2O-(30 ? x)Na2O–10WO3–60B2O3 (where x = 0, 5, 10, 15, 20, 25 and 30 mol%) have been prepared using the melt quenching technique. In the present work, the mixed alkali effect (MAE) has been investigated in the above glass system through density and modulated DSC studies. The density and glass transition temperature of the present gasses varies non-linearly, the exhibiting the mixed alkali effect. From the optical absorption studies, the values of direct optical band gap, indirect optical band gap energy (Eo) and Urbach energy(ΔE) have been evaluated. The values of Eo and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter have been examined to check the correlation among them and bond character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and the Yamashita–Kurosawa's interaction parameter, the present Li2O–Na2O–WO3–B2O3 glasses were classified as normal ionic (basic) oxides.  相似文献   

13.
Ki-Dong Kim 《Journal of Non》2008,354(15-16):1715-1720
The influence of K2O/(MgO + K2O) on some melt properties, including crystallization during cooling of melts and glass-forming ability, was investigated in the Li2O–Al2O3–SiO2 system with low Al2O3 content. The dependence of viscosity on K2O/(MgO + K2O) above 1000 °C showed a monotonic decrease due to the reduction of [MgO4] concentration and the conductivity also decreased due to the larger ion radius of K. The temperature dependence of conductivity for all melts showed an abrupt change at one temperature due to crystallization in which temperature of crystallization decreases with increase of K2O. The crystallization behavior near liquidus temperature was studied quantitatively by calculating the crystal volume fraction from apparent viscosity value. The glass-forming ability of the melts was discussed by using data related with viscosity and crystallization. Finally, it was suggested that the melts with K2O/(MgO + K2O) ? 0.75 have a good glass-forming ability.  相似文献   

14.
15.
The X-ray crystal structure of 7-hydroxyflavone monohydrate, C14H10O3 · H2O, is determined. The compound crystallizes in the monoclinic space group, P21/n with a = 3.801(3), b = 19.665(4), c = 16. 039(6), = 93.69(3)°, and = 0.68 mm–1 for Z = 4. The phenyl ring of the flavone moiety is rotated 18.6(1)° out of the penzopyran plane, which is a typical value for flavones. In the crystal lattice, there are wide channels which are lined mainly by C–H groups. The water molecules enclosed in these channels are severely disordered.  相似文献   

16.
In an effort to design low-melting, durable, transparent glasses, two series of glasses have been prepared in the NaPO3–ZnO–Nb2O5–Al2O3 system with ZnO/Nb2O5 ratio of 2 and 1. The addition of ZnO and Nb2O5 to the sodium aluminophosphate matrix yields a linear increase of properties such as glass transition temperature, density, refractive index and elastic moduli. The chemical durability is also significantly, but nonlinearly, improved. The glass with the highest niobium concentration, 55NaPO3–20ZnO–20Nb2O5–5Al2O3 was found to have a dissolution rate of 4.5 × 10? 8 g cm? 2 min? 1, comparable to window glass. Structural models of the glasses were developed using Raman spectroscopy and nuclear magnetic resonance spectroscopy, and the models were correlated with the compositional dependence of the properties.  相似文献   

17.
《Journal of Non》1997,209(3):209-226
The IR reflection spectra of mixed zinc alkali pyrophosphate glasses in the broad frequency ranges are reported and the quantitative treatment of these with a version of the dispersion analysis method was conducted based on the specific analytical model of the complex dielectric constant of glasses. Numerical data on the optical constants, band frequencies, and band intensities are calculated. Results obtained are interpreted in terms of vibrations of the (PO3)2− and (PO2) terminal groups, (PO4)3− anion, and P–O–P bridge. The presence of all these groups in the structures of glasses under study is confirmed and the formation of the (P3O9)3− ring metaphosphate anion rather than the chain polymeric phosphate anions is suggested. The gradual decrease in the width of the anion distribution toward the pyrophoshate anion with the Me2O for ZnO substitution is also confirmed. It is shown that this decrease determines the IR spectrum variations observed in the 0 to about 27 mol% Na2O composition range. The amounts of the (PO4)3− and (P3O9)3− anions are shown to become negligible in the structures of glasses with Na2O content greater than 30 mol%, and the IR spectrum variations observed in the 27–45 mol% Na2O composition range are shown to be mostly due to the intensity redistribution from the low-frequency component of the asymmetric stretch of the (PO3)2− terminal group to the high-frequency component of the same stretch.  相似文献   

18.
It is established that one of the 12 Kepler nets (R, 3366 + 3636) belongs to Krötenheerdt nets. However, the number of Kepler nets remains 12, because one of them (L, 33336) is enantiomorphic. Along with 20 Krötenheerdt nets, there may be many other polytypes which enter infinite sequences of the O, OD, DO, D types.  相似文献   

19.
20.
The structure of yttrium-decavanadate-24-hydrate, [Y2V10O28·24H2O], was determined by neutron diffraction at temperatures of 297 and 60 K. Space group P-1, triclinic, Z = 2; at 297 K : a = 9.36(1), b = 9.86(1), c = 23.53(3) Å, = 98.79(2), = 98.15(2), = 89.30(2), V = 2123(5); at 60 K : a = 9.19(3), b = 9.85(3), c = 23.31(12) Å, = 99.03(3), = 98.99(6), = 89.39(6)°, V = 2058(13). Final R factors of 10 and 9.4% were obtained using 1955 and 1100 observed structure factors at both temperatures, respectively. The position of the 24 water molecules was determined and the characteristics of the hydrogen bonds were analyzed at both temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号