首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the -carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl3 provided in low yield a single C–N condensation product 1 (at the primary terminal NH2) after the pyridyl –CH2– is formally oxidised to –CH+–. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C–N condensation products without the requirement for oxidation at the -C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl4, 5, and unsym-fac-[Co(dienbpc)Cl]ZnCl4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH) were coordinated, was obtained via the Co(II)/O2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.  相似文献   

2.
The photochemical reactions of the title complexes were studied in air-free benzene solution. In both cases photolysis leads to the production of complexes of the formula (η5-C5H5)M(PPh3)2. Both reactions are the result of the initial loss of a methyl radical from the excited state. The primary photoproduct, (η5-C5H5)MPPh3 (M=CO, Ni), then scavenges neutral ligands from the solution to yield, in the case of PPh3, (η5-C5H5)M(PPh3)2. In the absence of uncoordinated ligand in the reaction solution, the cobalt derivative reacts with the starting material to yield (η5-C5H5)Co(PPh3)2, a methyl radical and (η5-C5H5)Co(solvent)n.  相似文献   

3.
Reaction of the ruthenium(IV) chloro-bridged dimer [{Ru(η3 : η3-C10H16)Cl(μ-Cl)}2], 1, with ethanethiol (EtSH) in CH2Cl2 gives the bridged-cleaved adduct [Ru(η3 : η3-C10H16)Cl2(SHEt)], 2. Stirring of two molar equivalents of 2 in methanol with one equivalent of 1 gives the binuclear, mixed chloro/thiolato bridged compound [{Ru(η3 : η3-C10H16)Cl} 2(μ-SEt)], 3. The related doubly thiolato bridged complex [{Ru(η3 : η3-C10H10)Cl(μ-SEt)}2], 4, is formed by treatment of 1 with an excess of EtSH, or by prolonged stirring of 2 alone in methanol. Compounds 2–4 have been studied by cyclic voitammetry. Compound 2 undergoes only irreversible oxidation, whereas in the case of both 3 and 4 the observation of significant return waves is consistent with a greater stability of the primary redox products.  相似文献   

4.
When thienyl Schiff base 1, derived from 2-formylthiophene and hydrazine, reacted with Fe2(CO)9 in n-hexane, three major complexes were obtained: (1) a diironhexacarbonyl complex with two 2-thienylmethylideneamido bridging ligands 2, which resulted from the =N---N= bond cleavage of ligand 1; (2) a doubly cyclometalated di-μ-di-(η12-thienyl; η11(N))bis(hexacarbonyldiiron) complex (3); and (3) a cyclometalated (μ-η12-thienyl; η11(N))hexacarbonyldiiron complex (4). Molecular structures of compounds 1a, 1c, and 2a have been determined by single-crystal X-ray diffraction.  相似文献   

5.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

6.
The reaction of methylzirconocenechloride with 2-bornenyllithium yields (2-bornenyl)methylzirconocene (10a). Carbonylation of 10a takes place exclusively by CO-insertion into the Zr-C(sp2) bond to give Cp2ZrMe(η2-OC-C10H15) (16a). The corresponding hafnium complex 10b reacts analogously to give 16b. Complex 16a was characterized by X-ray diffraction, and found to contain an η2-acyl ligand bonded to zirconium in the thermodynamically favored “O-inside” arrangement with the following bonding parameters: d Zr-C(acyl) = 2.192(7) Å, d Zr-O(acyl) = 2.258(6) Å, d C=O = 1.246(9) Å, angles O(acyl)---Zr---C(acyl) = 32.5(2)°, Zr---C(acyl)---O(acyl) = 76.7(4)°.  相似文献   

7.
The tail-to-tail dimerization of methyl acrylate (MA) in the presence of H2Ru(PPh3)4 (1) or H2(CO)Ru(PPh3) 3 (2) and CF3SO3H to give a mixture of linear dimers is described. In neat methyl acrylate at 85°C the reaction shows turnover numbers of 300 in 20 h and 640 in 7 d. Mechanistic studies show that the initial step of the reaction is the reduction of H2Ru(PPh3)4 (1) by MA to form Ru(MA)2 (PPh3)2 (5). After activation with CF3SO3H the catalytically active species contains only one phosphane ligand. The basic mechanistic features of the dimerization reaction have been revealed by 2H NMR spectroscopy involving the use of CF3SO3D. The deuterium-labelling studies indicate the intermediate formation of a ruthenium(II) hydride complex. Subsequent olefin insertions in this complex, followed by β-hydride elimination,lead to the linear dimeric products.  相似文献   

8.
Cp2MoH2 reacts with methyl acrylate in the presence of acetylenes (L = C2H2, C2Me2, HCCtBu, HCCSiMe3, C2(SiMe3)2, HCCCH2OMe, HCCCH2NMe2) to form acetylene complexes Cp2Mo(L) 5. Protonation takes place with CF3CO2H at −80°C to give short-lived cations [Cp2MoH(L)+ (8) (L = C2Me2, HCCSiMe3, C2(SiMe3)2). The structure of [Cp2MoH{η2-C2(SiMe3)2}]PF6(9) was determined by an X-ray diffraction study.  相似文献   

9.
Reaction of the activated mixture of Re2(CO)10, Me3NO and MeOH with a 1:1 mixture of rac (d/l)- and meso-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso-[{Re2(μ-OMe)2(CO)6}2(μ,μ′-hptpd)] 1. The diastereomers can be easily separated by selective dissolution of d/l-1 in benzene, and give clearly distinguishable 1H- and 31P-NMR spectra. The fluxional behavior of d/l-1 in solution has been studied by variable-temperature 1H- and 31P-{1H}-NMR spectroscopy. The crystal structures of both d/l- and meso-1 have been determined. Both molecules consist of two {Re2(μ-OMe)2(CO)6} moieties which are bridged by the two P---CH2---CH2---P moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of d/l-1 do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex [{Re2(μ-OMe)2(CO)6}(μ,η2-tdppep)] 2, and the analogous reaction involving bis[2-diphenylphospinoethyl)phenylphosphine (triphos) gives [{Re2(μ-OMe)2(CO)6}(μ,μ′,η3-triphos){Re2(CO)9}] 3 and [{Re2(μ-OMe)2(CO)6}(μ,η2-triphos)] 4.  相似文献   

10.
The title compounds react with unidentate ligands, L, containing either phosphorus or arsenic donor atoms to yield the corresponding compounds of the type Ru(η5---C5Me4Et)(CO)LX; with didentate phosphorus donor ligands the major species formed is the bridged complex {Ru(η5---C5Me4Et)(CO)X}2{Ph2P(CH2)nPPh 2} n = 1, X = Br; n = 2, X = Cl). In contrast, unidentate ligands containing nitrogen donor atoms such as pyridine did not react with Ru(η5---C5Me4Et)(CO)2Cl although reaction with 1,10-phenanthroline or diethylenetriamine yielded the ionic products [Ru(η5---C5Me4Et)(CO)L]+Cl (L = phen or (NH2CH2CH2)2NH). Reaction of Ru(η5---C5Me4Et)(CO)2Br with AgOAc yielded the corresponding acetato complex Ru(η5---C5Me4Et)(CO)20Ac. Ru(η5--- C5Me4Et)(CO)2X reacts with AgY (Y = BF4 or PF6) in either acetone or dichloromethane to give the useful solvent intermediates [Ru(η5---C5Me4Et)(CO)2(solvent)]+Y, which readily react with ligands L to yield ionic derivatives of the type [Ru(η5---C5Me4Et)(CO)2L]+Y (where L = CO, NCMe, py, C2H4 or MeO2CCCCO2Me).  相似文献   

11.
Treatment of (η5-C5Me5)RuCl2(PR3) (1) with LiAlH4 in diethyl ether gives the ruthenium(II) tetrahydroaluminate complexes, (η5-C5Me5)Ru(AlH4)(PR3) (2) (R3 = Me3, Et3, iPr3, Ph2Me, Ph3), which can be quantitatively converted to the trihydriodurthenium(IV) complexes (η5-C5Me5)RuH3(PR3) (4), via protonolysis either by reaction with ethanol or by filtration through alumina. Low-temperature 1H NMR studies suggest the fluxionality of complexes 2 in solution at ambient temperature.  相似文献   

12.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

13.
Methyl(oxo)bis(η2-peroxo)rhenium(VII)1, the active species of the system CH3ReO3/H2O2 in the catalytic oxidation of different organic and organometallic compounds, is stabilized by a water molecule attached to the rhenium center. This water molecule can be removed and substituted by hexamethylphosphoramide (HMPA) to yield (hexamethylphosphoramide)methyl(oxo)bis(η2-peroxo rhenium(VII) (3). The synthesis, crystal structure (X-ray difraction study), and catalytic properties of which compound are reported. Crystal data are as follows: monoclinic, space group P21/n, A = 900.76(7) pm, B = 1229.80(11) pm, C = 1318.57(11) pm, β = 90.251(7)°, Rw = 0.034 for 1878 reflections. The catalytic properties of compound 3 in the oxidation of olefins with H2O2 are similar to those of 1.  相似文献   

14.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

15.
The chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes is reviewed. The complex [{(η5-C5Me5)RhCl2}2] (1a) reacted with MeLi to give, after oxidative work-up, blood-red cis-[{(η5-C5Me5)Rh(μ-CH2)}2(Me)2], 2. This has the two rhodiums in the +4 oxidation state (d5), and linked by a metal-metal bond (2.620 Å). Trans-2 was formed on isomerisation of cis-2 in the presence of Lewis acids, or by direct reaction of 1a with Al2Me6, followed by dehydrogenation with acetone. The Rh-methyls in [{(η5-C5Me5)Rh(μ-CH2)}2(Me)2] were readily replaced under acidic conditions (HX) to give [{(η5-C5Me5)Rh(μ-CH2)}2(X)2] (X = Cl, Br or I); these latter complexes reacted with a variety of RMgX to give [{(η5-C5Me5)Rh(μ-CH2)}2(R)2] (R = alkyl, Ph, vinyl, etc.). Trans-2 also reacted with HBF4 in the presence of L to give first [{(η5-C5Me5)Rh(μ-CH2)}2(Me)(L)]+ and then [{(η5-C5Me5)Rh(μ-CH2)}2(L)2]2+ (L = MeCN, CO, etc.). The {(η5-C5Me5)Rh(μ-CH2)}2 core is rather kinetically inert and also forms a variety of complexes with oxy-ligands, both cis-, e.g. [{(η5-C5Me5)Rh(μ-CH2)}2(μ-OAc)]+ and trans-, such as [(η5-C5Me5)Rh(μ-CH2)}2(H2O)2]2+. The complexes [{(η5-C5Me5)Rh(μ-CH2)}2(R)L]+ (R = Me or aryl) in the presence of CO, or [{(η5-C4Me5)Rh(μ-CH2)}2(R)2] (R = Me, Ph or CO2Me) in the presence of mild oxidants, readily yield the C---C---C coupled products RCH=CH2. The mechanisms of these couplings have been elucidated by detailed labelling studies: they are more complex than expected, but allow direct analogies to be drawn to C---C couplints that occur during Fischer-Tropsch reactions on rhodium surfaces.  相似文献   

16.
The hydroxo-complexes [{PdR(PPh3)(μ-OH)}2] (R = C6F5 or C6Cl5) have been obtained by reaction of the corresponding [{PdR(PPh3)(μ-Cl)}2] complexes with NBu4OH in acetone. In this solvent, the reaction of the hydroxo-bridged complexes with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz) in 1:2 molar ratio leads to the formation of the new complexes [{Pd(C5F5)(PPh3)(μ-azolate)}2] and [{Pd(C6Cl5)(PPh3)}2(μ-OH)(μ-azolate)] (azolate = pz or dmpz). The reaction of the bis(μ-hydroxo) complexes with Hpz and Hdmpz in acetone in 1:1 molar ratio has also been studied, and the resulting product depends on the organic radical (C6F5 or C6Cl5) as well as the azolate (pz or dmpz). The identity of the isomer obtained has been established in every case by NMR (1H, 19F and 31P) spectroscopy. The reaction of the bis(μ-hydroxo) complexes with oxalic (H2Ox) and acetic (HOAc) acids yields the binucle ar complexes [{PdR(PPh3)}2(μ-Ox)] (R = C6F5 or C6Cl5) and [{Pd(C6F5)(PPh3)(μ-OAc)}2], respectively. [{Pd(C6F5)(PPh3)(μ-OH)}2] reacts with PPh3 in acetone in 1:2 ratio giving the mononuclear complex trans-[Pd(C6F5) (OH)(PPh3)2], whereas the pentachlorophenylhydroxo complex does not react with PPh3, even under forcing conditions.  相似文献   

17.
4-Cycloheptatriene)Ru(CO)3 reacts with tetracyanoethylene (TCNE), 4-phenyltriazoline-3,5-dione (PTAD) and (carbomethoxy)maleic anhydride (CMA) to give stable 3 + 2 σ,π-allylic adducts. The 3 + 2 adduct with TCNE equilibrates via a [4,4]-sigmahaptotropic rearrangement with the less stable 6 + 2 adduct, which decomposes under the reaction conditions to the demetallated 6 + 2 adduct. It is concluded that σ,π-allylic adducts are in general more stable than their isomeric η4-π counterparts. The structure of the 3 + 2 TCNE adduct was determined by a single-crystal X-ray diffraction study.  相似文献   

18.
The synthesis of the new (η2-dppe)(η5-C5Me5)Fe---CC---1,3-(C6H4X) (m-2a/2b; X=F/Br) and (η2-dppe)(η5-C5Me5)Fe---CC---1,4-(C6H4I) (2c) complexes, as well as the solid-state structure of the known (η2-dppe)(η5-C5Me5)Fe---CC---1,4-(C6H4F) (2a) complex are described. The catalytic coupling reactions of the bromo complexes with various alkynes were next investigated. Starting from the known (η2-dppe)(η5-C5Me5)Fe---CC---1,4-(C6H4Br) complex (2b), the synthesis of the (η2-dppe)(η5-C5Me5)Fe---CC---1,4-(C6H4)---CC---H complex (6d) and of the corresponding silyl-protected precursors (η2-dppe)(η5-C5Me5)Fe---CC---1,4-(C6H4)CC---SiR3 (6b/6c; R=iPr/Me) are reported. By use of lithium---bromine exchange reactions on 2b, the silyl- (7a; E=Si; R=Me) and tin- (7b–7d; E=Sn; R=Me, Bu, Ph) substituted analogues (η2-dppe)(η5-C5Me5)Fe---CC---1,4-(C6H4)ER3 are also isolated. The spectroscopic and electrochemical characterisations of all these new Fe(II)/Fe(III) redox-active building blocks are presented and the electronic substituent parameters for the “(η2-dppe)(η5-C5Me5)Fe---CC” group are determined by means of 19F-NMR.  相似文献   

19.
The cationic diphenylphosphido-bridged compound [Ru2(μ-PPh2)(μ-OH)26-p-cymene)2][PF6) (2) has been prepared by reaction of the tri-μ-hydroxo complex [Ru2(μ-OH)3(η-p-cymene)2][PF6] (1) with diphenylphosphine. Complex 2 eliminates water on reaction with protic acids, incorporating the conjugate base of the added acid as a bridging ligand. Formic acid, acetic acid, phenol, and aniline react with 2 to give the monosubstituted compounds [Ru2(μ-PPh2)(μ-OH)(μ-L)(η6-p-cymene)2]PF6] (L = HCO2, MeCO2, OPh, or NHPH), whereas methanol, thiophenol, 1,2-benzenedithiol, hydrochloric acid and isopropanol afford the disubstituted derivatives [Ru2(μ-PPh2)(μ-L)26-p-cymene)2]PF6] (L = OMe, SPh, S2C6H4, Cl, or H).  相似文献   

20.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号