首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for the determination of residues of the illegal antibiotic chloramphenicol (CAP) in milk powders. The analyte is quantified by liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (LC-ESI-MS-MS) operating in negative ion multiple reaction monitoring mode (MRM) after a liquid-liquid extraction followed by a clean-up step on solid phase extraction (SPE) cartridge. Because of the presence of two chlorine atoms in the CAP molecule, four specific transition reactions of CAP were monitored by MS-MS in selecting m/z 321 --> 257, 321 --> 152 (35Cl2) and m/z 323 --> 257, 323 --> 152 (37Cl35Cl). Two calibration curves were constructed by plotting the area ratio of m/z 321 --> 152 versus 326 --> 157 and m/z 321 --> 257 versus 326 --> 262 against their corresponding amount ratio. Indeed, even if m/z 321 --> 152 was found to give a higher MS-MS response (calibration curve used by default), an interfering chemical substance was sometimes observed for some milk extracts and not for the transition m/z 321 --> 257. The quantitation method was validated according to the European Union (EU) criteria for the analysis of veterinary drug residues at 0.1, 0.2 and 0.5 microg/kg concentration levels using d5-CAP as internal standard. The decision limit (CCalpha) and detection capability (CCbeta) of CAP in milk were calculated for m/z 321 --> 152 at 0.02 microg/kg and 0.03 microg/kg, respectively, and for m/z 321 --> 257 at 0.02 microg/kg and 0.04 microg/kg, respectively. At the lowest fortification level (i.e. 0.1 microg/kg), repeatability and within-laboratory reproducibility were calculated for m/z 321 --> 257 both at 0.02 microg/kg and for m/z 321 --> 152 at 0.03 and 0.05 microg/kg, respectively. Moreover, the measurement of uncertainty of the analytical method was calculated at the same spiking levels and falls within the precision values of the within-laboratory reproducibility. This method can be applied to several types of milk powders (e.g. full cream, skim) and can serve as a monitoring tool to avoid that unacceptable levels of residues of CAP enter the food chain.  相似文献   

2.
A confirmatory method based on isotope dilution liquid chromatography-electrospray ionization tandem mass spectrometry is described for the determination of the antibiotic chloramphenicol (CAP) in foods. The method is quantitative and entails liquid-liquid extraction followed by a clean-up step on a silica gel solid-phase extraction cartridge. Mass spectral acquisition is done in the negative ion mode applying multiple reaction monitoring of two diagnostic transition reactions for CAP (m/z 321 --> 257 and m/z 321--> 152). In addition, the presence of two chlorine atoms in the CAP molecule provides further analyte certainty by assessing the 37Cl/35Cl ratio using the transition reactions m/z 323 --> 257 and m/z 323 --> 152. Validation of the method in chicken meat is conducted according to the latest European Union criteria for the analysis of veterinary drug residues at levels of 0.05, 0.10, and 0.20 microg/kg, employing [2H5]-chloramphenicol as internal standard. The decision limit and the detection capability were calculated at 0.01 microg/kg and 0.02 microg/kg, respectively. At the lowest fortification level (i.e. 0.05 microg/kg), precision values below 14 and 17% were achieved under repeatability and within-laboratory reproducibility conditions, respectively. The accuracy of the method was within 20, 15, and 5% of the target values at the 0.05, 0.10, and 0.20 microg/kg fortification levels, respectively. The applicability of this procedure was demonstrated by the analysis of other meat (turkey, pork, beef) and seafood (fish, shrimps) products. The method is robust and suitable for routine quality control operations, and more than 200 sample injections were performed without excessive pollution of the mass spectrometer or loss of LC column performance.  相似文献   

3.
J Riu  D Barceló 《The Analyst》2001,126(6):825-828
Linear alkylbenzene sulfonates (LAS) were determined by solid-phase extraction (SPE), followed by capillary electrophoresis and mass spectrometry detection (CE-MS). The linear range of the proposed method varied from 33 to 316 and from 215 to 2057 micrograms L-1, depending on the compound, with limits of detection ranging from 4.4 to 23 micrograms L-1 when 200 ml of wastewater were preconcentrated. The analysis and confirmation of the polar carboxylic metabolites of LAS, the sulfophenyl carboxylic acids (SPC) was also achieved, and their presence was detected in both, influent and effluents of the sewage treatment plant (STP). [M - H]- ions were used for CE-MS confirmation and quantification. CE-MS diagnostic ions were the same ones used in LC-electrospray (ESI)-MS and corresponded to m/z 297, 311, 325 and 339 for C10LAS, C11LAS, C12LAS and C13LAS, respectively. For SPC identification, diagnostic ions corresponded to m/z 215 to 369 (with 14 mass unit steps) for C2 to C13SPC, respectively. LAS were determined in wastewater samples of the influent and effluent of three sewage treatment plants (STP), two of them using biological treatment with secondary settlement and receiving mainly domestic wastewater whereas one of the plants was operated with physiochemical treatment and received mainly industrial wastewater. The concentration levels of total LAS varied from 1000 to 1900 micrograms L-1 in the influents of STP, whereas in the effluents the concentrations varied from 125 to 360 micrograms L-1.  相似文献   

4.
For the first time, the characterization of intact 150-kDa monoclonal antibodies (MAbs) using a commercially available three-dimensional ion-trap mass spectrometer (IT-MS) is reported. The IT-MS analysis was performed on-line with reversed-phase high performance liquid chromatography (RP-HPLC) on a POROS column using a nontraditional solvent system of acetonitrile, isopropanol, ethanol, and water in formic acid. The operating parameters of the IT-MS were optimized by extending the mass range to m/z 4000 and elevating the tube lens offset voltage value to around -100 V. Mass accuracy better than 300 ppm (+/-40 Da) has been routinely achieved for these macromolecules. Multiple peaks 162 Da apart due to the hexose variants of the monoclonal IgG antibodies were partially resolved in mass spectra. Several commercial and chimeric antibodies have been investigated in this study.  相似文献   

5.
Chloramphenicol (CAP) is extracted from an aqueous dilution of honey using ethyl acetate. The extracts are evaporated and redissolved in water. CAP is then extracted from the aqueous solutions using reversed-phase solid-phase extraction cartridges. CAP is eluted from the reversed-phase cartridges with acetonitrile-water and re-extracted into ethyl acetate. The ethyl acetate is evaporated, and the residue is reconstituted in an aqueous solution. Extracts are chromatographed using a reversed-phase column and analyzed by electrospray negative mode tandem mass spectrometry. Four product ions of precursors m/z 321 or 323 are monitored. The method meets confirmation criteria recommended by the U.S. Food and Drug Administration and 4-point identification criteria established by the European Union. With slight modifications to accommodate different equipment, the method was validated in 2 laboratories.  相似文献   

6.
建立了气相色谱-负离子化学电离源质谱同时测定动物组织中氯霉素(CAP)、甲砜霉素(TAP)和氟甲砜霉素(FF)残留量的方法。样品用乙酸乙酯提取,正己烷分配去脂肪,再用Florisil柱进一步净化,甲苯作为反应介质,用N,O-双(三甲基硅基)三氟乙酰胺(BSTFA)-三甲基氯硅烷(TMCS)(体积比为99∶1)进行硅烷化处理,用间硝基氯霉素(m-CAP)作为内标进行测定。CAP的检测限可达到0.03 μg/kg,TAP和FF的检测限可达到0.2 μg/kg;上述3种药物的标准曲线的线性相关系数均大于0.99。CAP,FF和TAP的批内测定的精密度(以相对标准偏差表示)依次为5.5%,10.4%和8.8%;批间测定的精密度依次为7.4%,20.7%和19.1%。回收率为80.0%~111.5%,相对标准偏差为1.2%~15.4%。该方法前处理步骤简单,处理后杂质干扰少,灵敏度高,适用性强,可用于猪肉及禽类、水产品等多种动物组织中氯霉素类药物残留的检测。  相似文献   

7.
Ionization efficiencies and fragmentation patterns of cyanoacrylate ultraviolet (UV) absorbers, Uvinul 3035 and Uvinul 3039, were studied using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS). Solvent effect on the ionization efficiencies was investigated using methanol, ethanol, acetone, and chloroform. The fragmentation patterns were also investigated by varying the fragmentor voltage. Solvated ions, the [M+H + solvent](+) of methanol, ethanol, and acetone were detected, but the [M+H + chloroform](+) ion was not observed. For Uvinul 3039 in chloroform, the [M+CHCl(2)](+) ion was detected instead of the solvated ion. Relative abundance of the solvated ion was decreased by increasing the fragmentor voltage. Fragment ions of m/z 250, 232, and 204 were detected and their abundance increased with an increase in the fragmentor voltage. The m/z 250 ion can be accounted for by a McLafferty rearrangement. The fragment ions of m/z 232 and 204 were formed not only by subsequent fragmentations of the m/z 250 ion, but also by ion-molecule reactions of solvent ion and neutral analyte.  相似文献   

8.
The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples.  相似文献   

9.
Mass spectrometric identification and characterization of growth-promoting anabolic-androgenic steroids in biological matrices has been a major task for doping control as well as food safety laboratories. The fragmentation behavior of stanozolol, its metabolites 17-epistanozolol, 3'-OH-stanozolol, 4alpha-OH-stanozolol, 4beta-OH-stanozolol, 17-epi-16alpha-OH-stanozolol, 16alpha-OH-stanozolol, 16beta-OH-stanozolol, as well as the synthetic analogues 4-dehydrostanozolol, 17-ketostanozolol, and N-methyl-3'-OH-stanozolol, was investigated after positive electrospray ionization and subsequent collision-induced dissociation utilizing a quadrupole-linear ion trap and a novel linear ion trap-orbitrap hybrid mass spectrometer. Stable isotope labeling, H/D-exchange experiments, MS3 analyses and high-resolution/high mass accuracy measurements of fragment ions were employed to allow proposals for charge-driven as well as charge-remote fragmentation pathways generating characteristic product ions of stanozolol at m/z 81, 91, 95, 105, 119, 135 and 297 and 4-hydroxylated stanozolol at m/z 145. Fragment ions were generated by dissociation of the steroidal A- and B-ring retaining the introduced charge within the pyrazole function of stanozolol and by elimination of A- and B-ring fractions including the pyrazole residue. In addition, a charge-remote fragmentation causing the neutral loss of methanol was observed, which was suggested to be composed by the methyl residue at C-18 and the hydroxyl function located at C-17.  相似文献   

10.
An existing method for chloramphenicol (CAP) determination in shrimp using a gas chromatograph with electron capture detector was adapted for confirmation of CAP with a liquid chromatograph interfaced to a triple quadrupole mass spectrometer. CAP residues are extracted from tissue with ethyl acetate, isolated via liquid-liquid extraction, and concentrated by evaporation. Extracts are chromatographed by using a reversed-phased column and analyzed by electrospray negative mode tandem mass spectrometry. Four product ions (m/z 152, 176, 194, and 257) of precursor m/z 321 were monitored. Moving from gas chromatography to liquid chromatography-tandem mass spectrometry improved the sensitivity of the method greatly, enabling reliable confirmation of CAP residues at 0.3 microg/kg (ppb). The method meets confirmation criteria recommended by the U.S. Food and Drug Administration and 4-point identification criteria established by the European Union. With slight modifications to accommodate different equipment, the method was validated in 3 laboratories.  相似文献   

11.
Humic substances were analysed by atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) mass spectrometry in positive and negative modes. Using APCI the average m/z range of humic substances was reduced 5-fold compared to ESI. High-resolution time-of-flight mass spectrometry revealed the formation of multiply charged molecules in the ESI mode. Moreover, it was possible to obtain daughter ion mass spectra of humic substances by nanospray tandem mass spectrometry. The size-exclusion chromatography elution profile of humic substances was highly influenced by the pH of the analyte solution. By contrast, the pH had no significant influence on the observed mass spectra of humic substances.  相似文献   

12.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

13.
An ultra‐high‐performance liquid chromatography/electrospray ionisation tandem mass spectrometry system is described for the separation and characterisation of uroporphyrinogen, heptacarboxylic acid porphyrinogen, hexacarboxylic acid porphyrinogen, pentacarboxylic acid porphyrinogen and coproporphyrinogen. The separation was carried out on a 100 mm × 2.1 mm Thermo‐Hypersil BDS column (2.4 µm average particle size) by gradient elution with a mixture of acetonitrile, methanol and 1 mol/L aqueous ammonium acetate buffer, pH 5.16, as eluent. The fragmentation pattern of each compound was established by collision‐induced dissociation tandem mass spectrometry. The most characteristic fragmentation was ring opening at one of the four methylene bridges of the protonated porphyrinogen molecule followed by further cleavages of methylene bridges linking the four pyrrole rings at various points to give product ions with methylenepyrrolenine, methylene‐dipyrrolenine and methylene‐tripyrrolenine structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method is described for the extraction, cleanup, determination, and confirmation of chloramphenicol (CAP) in cooked crab meat. The method involves pulverization of cooked crab meat with dry ice; extraction of the CAP into ethyl acetate (EtOAc); evaporation (by N2) of the EtOAc; addition of methanol, aqueous NaCl, and heptane; extraction of the lipids into the heptane, followed by extraction of the aqueous phase with EtOAc; evaporation (by N2) of the EtOAc; dissolution into methanol-water; filtration; and separation/detection/confirmation using LC/MS/MS. Crab meat was fortified at 0.25, 0.50, and 1.0 ng/g (ppb) chloramphenicol. Average absolute recoveries were 67, 84, and 86%, respectively, with relative standard deviation values all less than 1%. Four daughter ions (m/z 152, 176, 194, and 257) were monitored off the m/z 321 precursor ion. Determination was based on a standard curve using the peak areas of the m/z 152 daughter ion (the base peak) for standard solutions equivalent to 0.10, 0.20, 0.50, and 1.0 ppb in tissue (made with control crab extract). A set of 6 matrix controls (unfortified crab meat) was also analyzed, in which no chloramphenicol was detected. For identification purposes, the ion ratios (of each daughter ion versus the base daughter ion) of the fortified crab versus those of the chloramphenicol standards agreed within 10% (relative) at fortified chloramphenicol concentrations of 0.25-1.0 ppb.  相似文献   

15.
A mass spectrometric study was carried out on two nonylphenoxycarboxylic acids, NP1EC and NP2EC (where 1 and 2 indicate the number of ethoxylate units attached to the nonylphenoxy moiety), that are persistent metabolites of widely used nonionic surfactant nonylphenol ethoxylates. In a gas chromatographic/mass spectrometric (GC/MS) study of the methyl esters of NP1EC and NP2EC, two series of fragment ions were observed in electron ionization (EI) mass spectra; m/z (179 + 14n, n = 0-7) and m/z (105 + 14n, n = 0-4) for NP1ECMe and m/z (223 + 14n, n = 0-7) and m/z (107 + 14n, n = 0-5) for NP2ECMe. Similarity indices were used to compare quantitatively the mass spectra of isomers. The mass spectra of two isomers were found to be similar whereas those of the remaining isomers were readily distinguishable from each other. The abundant fragment ions of the two NPECMes were investigated further by GC/MS/MS; product ions resulting from cleavage in the alkyl moiety, cleavage in the ECMe moiety and cleavage in both moieties were detected. Possible structures of the nonyl groups in the two esters were inferred. GC/chemical ionization (CI) mass spectra of the NPECMes with isobutane as reagent gas showed characteristic hydride ion-abstracted fragment ions shifted by 1 Da from those in the corresponding EI mass spectra. The sensitivity of a selected ion monitoring quantitation method for the NPECMes is enhanced under CI conditions compared with that under EI conditions. With electrospray ionization MS/MS, [M - H](-) ions of NP1EC (m/z 277) and NP2EC (m/z 321) were observed and, upon collision-induced dissociation of [M - H](-) of each of the two acids, fragment ions of m/z 219 corresponding to deprotonated nonylphenol, were observed in each case. Based on this observation, a rapid, simple and reliable selected product ion quantitation method is proposed for NP1EC and NP2EC.  相似文献   

16.
Electrospray ionisation ion trap mass spectrometry (ESI-MS(n)) has been used to study the fragmentation patterns of nicotine and nine of its related compounds. From this study certain characteristic fragmentations are apparent with generally the pyrrolidine or piperidine ring being subject to chemical modifications. The structures of the product ions proposed for the ESI-MS(n) study have been supported by results from electrospray ionisation quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). Compounds with pyrrolidine and piperidine rings that possess an unsubstituted N atom have been shown to lose NH(3) at the MS(2) stage. Those compounds with N-methyl groups lose CH(3)NH(2) at the MS(2) stage. The loss of NH(3) or CH(3)NH(2) leaves the corresponding rings opened and this is followed by ring closure at the pyridine-2 carbon atom. Mono-N-oxides fragment in a similar way but the di-N-oxide can also fragment by cleavage of the bond between the pyridine and pyrrolidine rings. Cotinine also can undergo cleavage of this bond between the rings.This data therefore provides useful information on how substituents and the nature of the non-pyridine ring can affect the fragmentation patterns of nicotine and its related compounds. This information can be used in the characterisation of these compounds by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) which results in the separation of nicotine and its related compounds with limits of detection (LODs) ranging from 15 to 105 ng/mL. The use of LC/ESI-MS to study nicotine-containing samples resulted in the simultaneous and unambiguous identification of seven of the compounds discussed in this paper: cotinine identified at retention time 12.5 min (with its [M+H](+) ion at m/z 177), nornicotine 16.0 min (m/z 149), anatabine 18.0 min (m/z 161), myosmine 18.5 min (m/z 147), anabasine 20.4 min (m/z 163), nicotine 22.2 min (m/z 163), and nicotyrine 31.4 min (m/z 159). For quality control of nicotine replacement therapy products, these nicotine impurities can be readily identified and determined at levels up to 0.3% for single impurities and up to 1.0% for total impurities.  相似文献   

17.
For the first time, the characterization of intact 150-kDa monoclonal antibodies (MAbs) using a commercially available three-dimensional ion-trap mass spectrometer (IT-MS) is reported. The IT-MS analysis was performed on-line with reversed-phase high performance liquid chromatography (RP-HPLC) on a POROS column using a nontraditional solvent system of acetonitrile, isopropanol, ethanol, and water in formic acid. The operating parameters of the IT-MS were optimized by extending the mass range to m/z 4000 and elevating the tube lens offset voltage value to around ?100 V. Mass accuracy better than 300 ppm (±40 Da) has been routinely achieved for these macromolecules. Multiple peaks 162 Da apart due to the hexose variants of the monoclonal IgG antibodies were partially resolved in mass spectra. Several commercial and chimeric antibodies have been investigated in this study.  相似文献   

18.
19.
Hill CA  Thomas CL 《The Analyst》2005,130(8):1155-1161
The concept of using a short ionisation event, in this case a pulsed corona discharge, in conjunction with programmed gate delay is described. This technique is proposed for the selective study of different ionisation processes within the reaction region of an ion mobility spectrometer. The utility of such an approach was tested in a study of the ionisation of dipropylene-glycol-monomethyl-ether (DPM); a compound commonly used to test the operation of ion mobility spectrometers. Dipropylene-glycol-monomethyl-ether at a concentration of 113 microg m(-3) in air, with a water level of 75 mg m(-3) in air, was analysed using a switchable, high resolution ion mobility spectrometer, operating in the positive mode at 40 degrees C at ambient pressure. The ion mobility spectrometer was fitted with a pulsed corona discharge ionisation source, doped with ammonia at a concentration of 1.3 mg m(-3) in the reaction region, and interfaced to a mass spectrometer. Synchronisation of the ionisation event to the operation of the shutter grids for the drift region enabled different parts of the product ion population to be injected into the drift tube, and programming the gate delays produced a map of the gate delay verses drift time response surface. Ammonium bound dipropylene-glycol-monomethyl-ether was observed, [(DPM)NH4]+ (m/z 166) as well as the ammonium bound dimer [(DPM)2NH4]+ (m/z 314), the same as those observed with a 63Ni source. Two other species were also observed, but their molecular identity was not elucidated. One of them m/z 146, also observed with 63Ni, formed ammonium bound ions [(m/z 146)NH4]+ (K0= 1.49 cm2 V(-1) s(-1)), ammonium bound dimer ions [(m/z 146)2NH4]+(K0= 1.18 cm2 V(-1) s(-1)) and a mixed cluster ion with DPM [(m/z 146)(DPM)NH4]+(K0= 1.18 cm2 V(-1) s(-1)); while the other, m/z 88 a decomposition product, formed ammonium bound monomer [(m/z 88)NH4]+(K0= 1.68 cm2 V(-1) s(-1)), dimer ions [(m/z 88)2NH4]+(K0= 1.40 cm2 V(-1) s(-1)) and a mixed cluster ion containing DPM and ammonium, [(DPM)(m/z 88)2NH4]+(K0= 1.40 cm2 V(-1) s(-1)). The assignment of responses to these ions required the additional dimensionality in the data provided from the gate delay studies. The relationships evident in the programmable gate delay data enabled these ions to be differentiated from alternative assignments of possible nitrogen clusters, formed at the interface of the mass spectrometer.  相似文献   

20.
We report impact ionisation spectra from spherical poly(methyl methacrylate) (PMMA) microparticles of 724 nm diameter impacting a rhodium target. These projectiles were coated with an ultrathin (~11 nm) overlayer of polypyrrole, an electrically conducting organic polymer; this enabled the accumulation of sufficient surface charge to allow electrostatic acceleration up to speeds of 4 to 8 km s(-1) using a high-voltage Van de Graaff instrument. A grid above the target (held at 3.33 kV cm(-1) with respect to the target) accelerated the cations that were generated during the hypervelocity impacts, and these ions then drifted to a charge detector. By measuring the collected charge vs. time and assuming only single ionisation events, time-of-flight mass spectra were obtained. Strong signals were observed for cationic species with ions of m/z 41, 65 and 115. There were also minor contributions from cations with masses ranging from m/z 29 to 142. The three major signals are assigned to fragment ions (C(3)H(5)(+), C(4)H(5)O(+)/C(5)H(9)(+) and C(6)H(11)O(2)(+)) which are known to be associated with the decomposition of PMMA. These impact ionisation spectra differ significantly from those reported earlier using polystyrene (PS) microparticles. The aliphatic PMMA microparticles generate small (m/z <100) fragment ions more readily at lower speeds than the predominantly aromatic PS microparticles, where speeds of at least 10 km s(-1) are typically required for substantial yields of low-mass fragment ions. This correlates well with the well-known greater chemical and thermal fragility of PMMA compared to PS. The PMMA microparticles should prove useful synthetic mimics for aliphatic carbonaceous micrometeorites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号