首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
4μ‐A2B2 star‐shaped copolymers contained polystyrene (PS), poly(isoprene) (PI), poly(ethylene oxide) (PEO) or poly(ε‐caprolactone) (PCL) arms were synthesized by a combination of Glaser coupling with living anionic polymerization (LAP) and ring‐opening polymerization (ROP). Firstly, the functionalized PS or PI with an alkyne group and a protected hydroxyl group at the same end were synthesized by LAP and then modified by propargyl bromide. Subsequently, the macro‐initiator PS or PI with two active hydroxyl groups at the junction point were synthesized by Glaser coupling in the presence of pyridine/CuBr/N,N,N ′,N ″,N ″‐penta‐methyl diethylenetri‐amine (PMDETA) system and followed by hydrolysis of protected hydroxyl groups. Finally, the ROP of EO and ε‐CL monomers was carried out using diphenylmethyl potassium (DPMK) and tin(II)‐bis(2‐ethylhexanoate) (Sn(Oct)2) as catalyst for target star‐shaped copolymers, respectively. These copolymers and their intermediates were well characterized by SEC, 1H NMR, MALDI‐TOF mass spectra and FT‐IR in details. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Poly(N‐isopropylacrylamide) (PNIPAAm) homopolymers synthesized by reversible addition–fragmentation chain transfer polymerization were used as macro‐chain‐transfer agents to synthesize smart amphiphilic block copolymers with a switchable hydrophilic–hydrophobic block of PNIPAAm and a hydrophilic block of poly(N‐dimethylacrylamide). All polymers were characterized by gel permeation chromatography, 1H NMR, and differential scanning calorimetry. The reversible micelles formed by the block copolymers of various compositions in aqueous solutions were characterized by 1H NMR, dynamic light scattering, and tensiometry. Micelles were observed in the aqueous solutions when the temperature was increased to 40 °C because of the collapse of the PNIPAAm structure, which led to a PNIPAAm hydrophobic block. The drug loading capacity was illustrated with the use of the solvatochromic Reichardt's dye and measured by ultraviolet–visible. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3643–3654, 2005  相似文献   

3.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

4.
A new series of sulfonated poly(benzoxazole ether ketone)s (SPAEKBO-X) were prepared by the aromatic nucleophilic polycondensation of 4,4′-(hexafluoroisopropylidene)-diphenol with 2,2′-bis[2-(4-fluorophenyl)benzoxazol-6-yl]hexafluoropropane and sodium 5,5′-carbonylbis-2-fluorobenzenesulfonate in various ratios. Fourier transform infrared and 1H NMR were used to characterize the structures and sulfonic acid contents of the copolymers. The copolymers were soluble in N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, and N,N-dimethylformamide and could form tough and flexible membranes. The protonated membranes were thermally stable up to 320 °C in air. The water uptake, hydrolytic and oxidative stability, and mechanical properties were evaluated. At 30–90 °C and 95% relative humidity, the proton conductivities of the membranes increased with the sulfonic acid content and temperature and almost reached that of Nafion 112. At 90–130 °C, without external humidification, the conductivities increased with the temperature and benzoxazole content and reached above 10−2 S/cm. The SPAEKBO-X membranes, especially those with high benzoxazole compositions, possessed a large amount of strongly bound water (>50%). The experimental results indicate that SPAEKBO-X copolymers are promising for proton-exchange membranes in fuel cells, and their properties might be tailored by the adjustment of the copolymer composition for low temperatures and high humidity or for high temperatures and low humidity; they are especially promising for high-temperature applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2273–2286, 2007  相似文献   

5.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

6.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

7.
Triblock copolymers of N‐vinylpyrrolidone (NVP) and polydimethylsiloxane (PDMS) were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization using two different types of difunctional telechelic PDMS‐based dixanthate macroinitiators. The incorporation of PDMS into the triblock copolymers was evidenced by 1H NMR spectroscopy and varied between 4 mol % and as high as 20 mol %, dependent on reaction time and monomer conversion. The copolymer homogeneity was characterized in terms of molecular weight distribution determined by GPC to estimate the level of control over the chain length. Monomodal molecular weight distributions were observed, and 1H NMR spectroscopy indicated the copolymers had number average molecular weights (Mn) ranging between 28,000 and 160,000 g/mol. In addition, thin film phase separation and critical micelle concentrations for these copolymers were analyzed via transmission electron microscopy and surface tension measurements, respectively. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3387–3394  相似文献   

8.
Chitin and its derivative chitosan are rapidly becoming of commercial interest in the biomedical, wastewater treatment, and fiber industries. One of the most important properties of these copolymers is the degree of N-acetylation. Presently there is no rapid accurate method to determine this value. We propose near infrared spectroscopy for such a method. Using a primary method such as hydrobromic acid titration or 1H-NMR, standards can be established. Once a model calibration equation has been developed, unknown samples can be analyzed by near infrared spectroscopy in less than 5 min. This is demonstrated by examining representative structural monomers of chitosan, N-acetyl-D-glucosamine and D-glucosamine hydrochloride, as model compounds as well as actual chitin and chitosan samples. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
To establish the reaction condition under which the radical copolymerization of methyl methacrylate (MMA) with α‐(2‐hydroxy‐4‐methacryloyloxyphenyl)‐N‐(2,6‐dimethylphenyl)nitrone (HMDN) proceeds smoothly to give photoreactive copolymers, the effects of the nitrone chromophore on the extent to which the radical polymerization of MMA is inhibited were investigated. It was found that the reversible addition of initiating radical to the CH?N+(? O?) moiety in the nitrone chromophore readily occurs to give the nitroxyl radical. It was also found that the latter radical undergoes an efficient coupling reaction with propagating radical to inhibit the radical copolymerization of MMA with HMDN. However, on raising the reaction temperature and the radical concentration, the copolymerization was successfully carried out. This polymerization condition allowed us to prepare the HMDN/MMA, HMDN/styrene, and HMDN/cyclohexyl acrylate copolymers in good yields. The photoirradiation of the copolymer film prepared on a silicon wafer lowered its refractive index by 0.003–0.023, depending on the relative composition of the diarylnitrone chromophore in these copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 88–97, 2006  相似文献   

10.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Thiocarlide (THC; N,N′‐bis[p‐(isoamyloxy)phenyl]‐thiourea; also known as Isoxyl®) has been used in the past as an anti‐tuberculosis agent. In an effort to improve the therapeutic value of THC, several N‐glycosyl‐N′‐[p‐(isoamyloxy)phenyl]‐thiourea derivatives were synthesized by coupling an aniline derivative and glycosyl isothiocyanates. The minimum inhibitory concentration (MIC) values of the new products against M. tuberculosis were determined.  相似文献   

12.
Histidine functional block copolymers are thermally self‐assembled into polymer micelles with poly‐N‐isopropylacrylamide in the core and the histidine functionality in the corona. The thermally induced self‐assemblies are reversible until treated with Cu2+ ions at 50 °C. Upon treatment with 0.5 equivalents of Cu2+ relative to the histidine moieties, metal‐ion coordination locks the self‐assemblies. The self‐assembly behavior of histidine functional block copolymers is explored at different values of pH using DLS and 1H NMR. Metal‐ion coordination locking of the histidine functional micelles is also explored at different pH values, with stable micelles forming at pH 9, observed by DLS and imaged by atomic force microscopy. The thermal self‐assembly of glycine functional block copolymers at pH 5, 7, and 9 is similar to the histidine functional materials; however, the self‐assemblies do not become stable after the addition of Cu2+, indicating that the imidazole plays a crucial role in metal‐ion coordination that locks the micelles. The reversibility of the histidine‐copper complex locking mechanism is demonstrated by the addition of acid to protonate the imidazole and destabilize the polymer self‐assemblies. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1964–1973  相似文献   

13.
Thermoresponsive copolymers have attracted considerable interest in both the polymer and biomaterial literature. They show interesting fundamental behaviour (thermally triggered contraction and aggregation) as well as potentially useful properties (reversible gelation). Biocompatible thermoresponsive copolymers are being developed for application in drug delivery and regenerative medicine. This review focuses on the fundamental aspects of thermally triggered conformational changes with an emphasis on copolymer design. Also, the ability to use these copolymers to produce thermoresponsive colloidal dispersions is discussed. Recent examples from within our group and elsewhere are considered in order to illustrate structure–property relationships. The review focuses on copolymers involving N-isopropylacrylamide. However, non-acrylamide thermoresponsive copolymers are also considered in detail. Emerging areas that appear likely to be actively pursued in the future are also discussed.  相似文献   

14.
Sulfonated poly(phthalazinone ether ketone) (SPPEK) copolymers and sulfonated poly(phthalazinone ether sulfone) (SPPES) copolymers containing pendant sodium sulfonate groups were prepared by direct copolymerization. The reaction of disodium 3,3′‐disulfonate‐4,4′‐difluorobenzophenone (SDFB‐Na), 4,4′‐difluorobenzophenone (DFB), and 4‐(4‐hydroxyphenyl)‐1(2H)‐phthalazinone (DHPZ) at 170 °C in N‐methyl‐2‐pyrrolidione containing anhydrous potassium carbonate gave SPPEKs. SPPESs were similarly obtained with 3,3′‐disulfonate‐4,4′‐difluorophenyl sulfone, 4‐fluorophenyl sulfone (DFS), and DHPZ as monomers. The sulfonic acid groups, being on deactivated positions of the polymer backbone, were expected to be hydrolytically more stable than postsulfonated polymers. Fourier transform infrared and 1H NMR were used to characterize the structures and degrees of sulfonation of the sulfonated polymers. Membrane films of SPPEKs with SDFB‐Na/DFB molar feed ratios of up to 60/40 and SPPESs with sulfonated 4‐fluorophenyl sulfone/DFS molar feed ratios of up to 50/50 were cast from N,N‐dimethylacetamide polymer solutions. Membrane films in acid form were then obtained by the treatment of the sodium‐form membrane films in 2 N sulfuric acid at room temperature. An increase in the number of sulfonate groups in the copolymers resulted in an increased glass‐transition temperature and enhanced membrane hydrophilicity. The sodium‐form copolymers were thermally more stable than their acid forms. The proton conductivities of the acid‐form copolymers with sulfonated monomer/unsulfonated monomer molar feed ratios of 0.5 and 0.6 were higher than 10?2 S/cm and increased with temperature; they were less temperature‐dependent than those of the postsulfonated products. SPPESH‐50 showed higher conductivity than the corresponding postsulfonated poly(phthalazinone ether sulfone). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2731–2742, 2003  相似文献   

15.
N-isopropylacrylamide and N-acryloxysuccinimide have been copolymerized in various mixtures of terrahydrofuran and toluene using azobisisobutyronitrile as initiator. Polymerization has been conducted for 24 h at 50°C under a slightly positive pressure of nitrogen. The copolymers were assayed for active ester content by measuring the UV absorbance (259 nm) of N-hydroxysuccinimide anion, generated by reacting the copolymers with N-isopropylamine in dimethylformamide and dissolving the resulting mixture in 0.1M HEPES buffer, pH 7.5. The molecular weight and its distribution have been estimated by gel permeation chromatography. The active ester content was found to be equivalent to the comonomer feed ratio, and the major factor controlling the molecular weight was the ratio of tetrahydrofuran to toluene. Thus, the number of active esters per polymer chain could be controlled by adjustment of the comonomer feed ratio and the ratio of tetrahydrofuran to toluene. Monomer reactivity ratios for copolymerization of N-isopropylacrylamide with N-acryloxysuccinimide were also estimated. These copolymers are useful for immobilizing binding ligands such as antibodies for subsequent thermally induced precipitation immunoassays and bioseparation processes.  相似文献   

16.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

17.
N‐Stearylacrylamide (SAAm), N‐oleylacrylamide (OAAm), and N‐laurylacrylamide (LAAm) were synthesized. They were characterized by 1H‐NMR, 13C‐NMR, FT‐IR, melting point measurements, and elemental analysis. The copolymerizations of SAAm, OAAm, and LAAm with 2‐[(3‐(acrylamido)propyl)dimethylammonio]ethyl 2′‐isopropyl phosphate were carried out, and a series of amphiphilic poly(acrylamide)s (1a,b, 2, and 3a,b) were obtained. These copolymers showed polyelectrolyte behavior in their viscous properties in polar solvents. X‐ray diffraction analysis indicated that the copolymers 1a,b formed similar stacked bilayers with hydrophilic groups and hydrophobic parts. The polymorphic phase transition of these copolymers was also observed by DSC. In addition, the monolayers as well as LB films of these amphiphilic copolymers were prepared on the surface of water and their π–A isotherms were investigated at different temperatures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1293–1302, 1999  相似文献   

18.
Novel thermoresponsive double‐hydrophilic fluorinated block copolymers were successfully synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. Poly[N‐(2,2‐difluoroethyl)acrylamide] (P2F) was synthesized via RAFT polymerization of N‐(2,2‐difluoroethyl)acrylamide (M2F) using 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methylpropionic acid (DMP) as the chain transfer agent (CTA) and 2,2′‐azobisisobutyronitrile (AIBN) as the initiator. The resulting P2F macroCTA was further chain extended with N‐(2‐fluoroethyl)acrylamide (M1F) to yield poly{[N‐(2,2‐difluoroethyl)acrylamide]‐b‐[N‐(2‐fluoroethyl)acrylamide]} (P2F‐b‐P1F) block copolymers with different lengths of the P1F block. Molecular weight and molecular weight distribution were determined by gel permeation chromatography. The average molecular weight (Mn) of the resulting polymers ranged from 2.9 × 104 to 5.8 × 104 depending on the length of the P1F block. The molecular weight distribution was low (Mw/Mn = 1.11–1.19). Turbidimetry by UV‐Visble (UV‐Vis) spectroscopy, dynamic light scattering, and in situ temperature‐dependent 1H NMR measurements demonstrated that the P2F block underwent a thermal transition from hydrophilic to hydrophobic, which in turn induced self‐assembly from unimers to aggregates. Transmission electron microscopy studies demonstrated that polymeric aggregates formed from an aqueous solution of P2F‐b‐P1F at 60 °C were disrupted by cooling down to 20 °C and regenerated by heating to 60 °C. Temperature‐triggered release of a model hydrophobic drug, coumarin 102, was also demonstrated. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
A series of pH-responsive random copolymers comprised of 2-hydroxyethyl methacrylate (HEMA) and tert-butyl carbamate (Boc)-protected phenylalanine methacryloyloxyethyl ester (Boc-Phe-EMA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in N,N′-dimethylformamide (DMF) at 70 °C. The synthesized copolymers were comprehensively characterized using a combination of techniques, including 1H NMR, FT-IR spectroscopy and size exclusion chromatography (SEC). Reactivity of each monomers towards controlled radical polymerization was evaluated by determining the reactivity ratios by virtue of extended Kelen-Tüdös method at high conversions revealed the higher reactivity of non-modified HEMA (rHEMA=1.03) in contrast to Boc-Phe-EMA (rBoc-Phe-EMA=0.48). Furthermore, the expulsion of the Boc-groups resulted copolymers with ionizable pendant primary ammonium and hydroxyl groups. To understand the glass transition behaviours of homo- and co-polymers, differential scanning calorimetric (DSC) measurements were carried out. The effect of HEMA content on the pH-sensitivity of the copolymers in aqueous medium was investigated through turbidity measurements. Finally, the counteranion exchange from trifluoroacetate to chloride provided copolymers with enhanced water solubility and unaltered phase transition pH.  相似文献   

20.
We report here a reversible self‐assembly formation system using block copolymers with thermo‐tunable properties. A series of double‐responsive block copolymers, poly(N‐isopropylacrylamide (NIPAAm))‐block‐poly(NIPAAm‐coN‐(isobutoxymethyl)acrylamide (BMAAm)) with two lower critical solution temperatures were synthesized by one‐pot atom transfer radical polymerization via sequential monomer addition. When dissolved in aqueous solution at room temperature, the block copolymers remained unimeric. Upon heating above room temperature, the block copolymers self‐assembled into micellar structures. The micelle formation temperature and the resulting diameter were controlled by varying the BMAAm content. 1H Nuclear Magnetic Resonance, dynamic light scattering, field‐emission scanning electron microscopy, and fluorescence spectra revealed the presence of a monodisperse nanoassembly, and demonstrated the assembly formation/inversion process was fully reversible. Moreover, a model hydrophobic molecule, pyrene, was successfully loaded into the micelle core by including pyrene in the original polymer solution. Further heating resulted in mesoscopic micelle aggregation and precipitation. This dual micelle and aggregation system will find utility in drug delivery applications as a thermal trigger permits both aqueous loading of hydrophobic drugs and their subsequent release. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号