首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(viyl chloride)/Na^ -montmorillonite(PVC/MMT)nanocomposites with different MMT contents were prepared via melt blending.Wide-angle X-ray diffraction(WAXD)and transmission electron microscopy(TEM)were used to characterize the structures.Effects of MMT content on the mechanical properties were also studied.It is found that PVC molecular chains can intercalate into the gallery of MMT layers during melt blending process,the stiffiness and toughness of the composites are inproved simultaneously within 0.5-7wt% MMT content,and the transparency and mechanical properties decrease as MMT conten further increases.  相似文献   

2.
Summary: In this work, poly(acrylonitrile-butadiene-styrene) (ABS) and different organically modified montmorillonite clay nanocomposites were prepared by melt intercalation in a co-rotating twin screw extruder. The influence of the screw torque during processing and of the mixture of the modified organoclays in the intercalation/exfoliation of the clay in the polymeric matrix was evaluated through low angle X-ray diffraction range and capillary and parallel plate-plate rheometry.  相似文献   

3.
A novel route for producing polymer blends by reactive extrusion is described, starting from poly (vinyl chloride)/methyl methacrylate (PVC/MMA) dry blend and successive polymerization of MMA in an extruder. Small angle X‐ray scattering (SAXS) measurements were applied to study the monomer's mode of penetration into the PVC particles and to characterize the supermolecular structure of the reactive poly(vinyl chloride)/poly(methyl methacrylate) (PVC/PMMA) blends obtained, as compared to the corresponding physical blends of similar composition. These measurements indicate that the monomer molecules can easily penetrate into the PVC sub‐primary particles, separating the PVC chains. Moreover, the increased mobility of the PVC chains enables formation of an ordered lamellar structure, with an average d‐spacing of 4.1 nm. The same characteristic lamellar structure is further detected upon compression molding or extrusion of PVC and PVC/PMMA blends. In this case the mobility of the PVC chains is enabled through thermal energy. Dynamic mechanical thermal analysis (DMTA) and SAXS measurements of reactive and physical PVC/PMMA blends indicate that miscibility occurs between the PVC and PMMA chains. The studied reactive PVC/PMMA blends are found to be miscible, while the physical PVC/PMMA blends are only partially miscible. It can be suggested that the miscible PMMA chains weaken dipole–dipole interactions between the PVC chains, leading to high mobility and resulting in an increased PVC crystallinity degree and decreased PVC glass transition temperature (Tg). These phenomena are shown in the physical PVC/PMMA blends and further emphasized in the reactive PVC/PMMA blends. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A series of intercalated poly(trimethylene terephthalate) (PTT)/clay nanocomposites were prepared in a twin‐screw extruder by the melt mixing of PTT with either quaternary or ternary ammonium salt‐modified clays. The morphology and structure, along with the crystallization and melting behavior, and the dynamic mechanical behavior of the composites were characterized by X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The results showed that the PTT chains could undergo center‐mass transport from the polymer melt into the silicate galleries successfully during the blending and extrusion process. More coherent stacking of the silicate layers was reserved at higher clay concentrations and shorter blend times. Compared with conventionally compounded composites, the nanoscale‐dispersed organophilic clays were more effective as crystal nucleation agents. The influence of the nanosilicates on the crystallization and melting behavior of PTT became distinct when the concentration of clay was around 3 wt %. The changes in the crystallization behavior of the polymer/clay nanocomposites depended not only on the size of the silicates but also on the intrinsic crystallization characteristics of the polymers. The resulting nanocomposites showed an increase in the dynamic modulus of PTT and a decrease in the relaxation intensity (both in loss modulus and loss tangent magnitude). © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2275–2289, 2003  相似文献   

5.
The structural evolution during uniaxial stretching of poly(vinyl chloride) films was studied using our real time spectral birefringence stretching machine. The effect of clay loading and the amount of plasticizer as well as the rate effects on the birefringence development and true mechanical response are presented with a final model summarizing the molecular phenomena during stretching. Mechano‐optical studies revealed that birefringence correlated with mechanical response (stress, strain, work) nonlinearly. This was primarily attributed to the preexisting strong network of largely amorphous chains connected via small crystallites that act as physical crosslinking points. These crystallites are not easily destroyed during the high‐speed stretching process as evidenced from the birefringence–true strain curves along with the X‐ray crystallinity measurements. At high speeds, the amorphous chains do not have enough time to relax and hence attain higher orientation levels. The crystallites, however, orient more efficiently when stretched at slow speeds. Apparently, some relaxation of the surrounding amorphous chains helps rotate the crystallites in the stretching direction. Overall birefringence is higher at high stretching speeds for a given true strain value. When the nanoparticles are incorporated, the orientation levels are increased significantly for both the crystalline and amorphous phases. Nanoplatelets increase the continuity of the network because they have strong interaction with the amorphous chains and/or crystallites. This in turn helps transfer the local stresses to the attached chains and increase the orientation levels of the chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 724–742, 2005  相似文献   

6.
Toughening‐modified poly(vinyl chloride) (PVC)/organophilic montmorillonite (OMMT) composites with an impact‐modifier resin (Blendex 338) were prepared by melt intercalation, and their microstructures were investigated with wide‐angle X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. The mechanical properties of the PVC composites were examined in terms of the content of Blendex and OMMT, and the fracture toughness was analyzed with a modified essential work of fracture model. Intercalated structures were found in the PVC/OMMT composites with or without Blendex. Either Blendex or OMMT could improve the elongation at break and notched impact strength of PVC at proper contents. With the addition of 30 phr or more of Blendex, supertough behavior was observed for PVC/Blendex blends, and their notched impact strength was increased more than 3319% compared with that of pristine PVC. Furthermore, the addition of OMMT greatly improved both the toughness and strength of PVC/Blendex blends, and the toughening effect of OMMT on PVC/Blendex blends was much larger than that on pristine PVC. Blendex and OMMT synergistically improved the mechanical properties of PVC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 286–295, 2004  相似文献   

7.
聚乳酸/蒙脱土纳米复合材料的结构和热性能   总被引:6,自引:0,他引:6  
聚乳酸/蒙脱土纳米复合材料的结构和热性能;聚乳酸;蒙脱土;纳米复合材料;插层  相似文献   

8.
采用插层复合方法在碱性水溶液中制备了木质纤维素-蒙脱土纳米复合材料,并分析了反应温度、反应时间、木质纤维素与蒙脱土的质量比等因素对纳米复合材料有机化程度的影响,用FT-IR、XRD、TEM、SEM等方法对纳米复合材料的结构进行了表征。结果表明:蒙脱土片层结构在反应过程中被撑开,木质纤维素分散在其中,形成插层-剥离型纳米复合材料,其热稳定性较木质纤维素有了较大提高。  相似文献   

9.
The goal of the study was to prepare a graphene (GN) dispersion in a poly (vinyl chloride) (PVC) solution with enhanced stability of the nanofiller thanks to the application of curcuma extract (CE). The stable dispersion was used to obtain PVC/GN nanocomposites with more homogeneous graphene by the solvent evaporation method. The CE effectiveness was compared with two commercially available dispersants in the form of oleic acid (OA) and polysorbate 80 (P80).The chemical composition of the CE was examined by Fourier-transform infrared spectroscopy. The dispersion stability was tested by the multiple light scattering method (Turbiscan Lab) and evaluated visually over a period of 40 days. The homogeneity of the filler's dispersion in the PVC matrix was evaluated by scanning electron microscopy and Raman spectroscopy.The application of the dispersing agents led to improved stability of the graphene dispersion in PVC solution. CE was the agent that most effectively improved the homogeneity of graphene dispersion, both in dispersions in a PVC solution and in PVC/GN nanocomposite films.  相似文献   

10.
聚酰胺/粘土纳米复合材料   总被引:18,自引:1,他引:17  
聚酰胺/粘土纳米复合材料是一种新型的有机-无机纳米复合材料。在无机物含量远少于常规填充复合材料的情况下就可以具有较好的力学性能、阻隔性能等,热稳定性能也显著提高,并具有阻燃性和各向异性。是一种性能优异的、具有广泛应用前途的纳米复合材料。综述了该纳米复合材料的制备、性能和应用前景等。  相似文献   

11.
This research work has concerned a study on toughness of PVC/natural rubber (NR) blends compatibilized with epoxidized natural rubber (ENR). The aim of this work was to investigate the effect of degree of epoxidation on morphology and mechanical properties of the blends. Epoxidized natural rubber with a variety of epoxidation contents were prepared by reacting the NR latex with formic acid and hydrogen peroxide at various chemical contents. Chemical structure and epoxidation content of epoxidized natural rubber were evaluated by FTIR and 1H-NMR techniques. After that, three grades of ENR with epoxidation contents of 15, 25 and 42 % (by mole) were further used for blending with PVC and NR in an internal mixer at 60 rpm and at 170 °C. From tensile and impact tests, it was found that tensile elongation and impact strength of the materials remarkably increased with degree of epoxidation. On the other hand, tensile strength and modulus of the materials rarely changed with the epoxidation content. An increase in toughness of the blends with epoxidation content was related to a better molecular interaction between PVC and ENR as suggested by torque-time curves of the materials.  相似文献   

12.
The synthesis of MMT and poly(o-anisidine) (MMT/POA) clay nanocomposites was carried out by using the chemical oxidative polymerization of POA and MMT clay with POA, respectively. By maintaining the constant concentration of POA, different percentage loads of MMT clay were used to determine the effect of MMT clay on the properties of POA. The interaction between POA and MMT clay was investigated by FTIR spectroscopy, and, to reveal the complete compactness and homogeneous distribution of MMT clay in POA, were assessed by using scanning-electron-microscope (SEM) analysis. The UV–visible spectrum was studied for the optical and absorbance properties of MMT/POA ceramic nanocomposites. Furthermore, the horizontal burning test (HBT) demonstrated that clay nanofillers inhibit POA combustion.  相似文献   

13.
A plasticized poly(vinyl chloride) (PVC) has the advantage of low cost, long-term stability and flame resistance among other commodity plastic, and has been in service as a product in railway field. However, the transition of the plasticizer concentration through the degrading condition and its relationship with the mechanical properties, the molecular motion, the appearance of surface and other properties was not clear. These relationships were studied by means of Rheovibron, pulse NMR, GC/MS, GPC, SEM and other methods. The bulk properties show similar change between weathering and thermal aging. In addition, the molecular chain was little influenced, however, the plasticizer concentration shows obviously different transition through each phase of aging conditions. According to the results of the observation of surface and section, different appearances between weathering and thermal aging were indicated and these appearances closely relate to the bulk properties. In conclusion, through the weathering condition, a stepwise flow out of inorganic components and plasticizer was presumable to be a main mechanism of the degradation. On the other hand, through the thermal aging condition, the rearrangement and aggregation of the molecular chain by the annealing effect were conceivable as the main mechanism of the degradation.  相似文献   

14.
ABS/PVC blends were prepared over a range of compositions by mixing PVC, SAN, and PB‐g‐SAN. All samples were designed to have a constant rubber level of 12 wt % and the ratio of total‐SAN to PVC in the matrix of the blends varied from 70.5/17.5 to 18/80. Transmission electron microscope and scanning electron microscope have been used to study deformation mechanisms in the ABS/PVC blends. Several different types of microscopic deformation mechanisms, depending on the composition of blends, were observed for the ABS/PVC blends. When the blend is a SAN‐rich system, the main deformation mechanisms were crazing of the matrix. When the blend is a PVC‐rich system, crazing could no longer be detected, while shear yielding of the matrix and cavitation of the rubber particles were the main mechanisms of deformation. When the composition of blend is in the intermediate state, both crazing and shear yielding of matrix were observed. This suggests that there is a transition of deformation mechanism in ABS/PVC blends with the change in composition, which is from crazing to shear deformation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 687–695, 2006  相似文献   

15.
The onset and extent of secondary particle formation in the seeded emulsion polymerization of vinyl chloride were investigated by performing a series of seeded polymerizations at different concentrations of seed latex and surfactant. It was found that, in general, both the onset and the extent of secondary particle formation are determined not only by the rate of homogeneous nucleation, but also by the rates of particle coagulation. A comparison of methods to compute the evolution of the particle size distribution in vinyl chloride emulsion polymerization was also carried out. For growth processes, the widely-used pseudo-bulk model gives correct answers. For processes involving particle formation, on the other hand, this model cannot be used because it neglects, among others, the effects of nucleation and coagulation on the radical number distribution. To surmount this problem, we propose to use the zero-one-two model, for which the full population balance equations are given here.  相似文献   

16.
稀土掺杂PVC的紫外及微波交联研究   总被引:2,自引:1,他引:2  
聚氯乙烯 (PVC)是我国目前产量最大 ,应用面最广的高分子原材料。但其耐热性、稳定性及抗老化性都较差。我们考虑到使用稀土掺杂以改进其相关性能 ,同时掺入了少量从水玻璃中提取出来的活性硅醇到PVC中以增加其柔性 ,探索了紫外辐射交联和微波辐射交联对PVC机械力学性能的影响。本文采用PVC流延膜来进行辐射交联并测定样品的力学性能。结果发现 ,稀土掺杂的结果使得样品的扯断伸长率大幅度提高 ,拉伸强度上升显著。而添加活性硅醇后PVC流延膜的扯断伸长率进一步提高 ,拉伸强度则下降 ,柔性得以提高。将氯化钕溶于 95 %的乙醇…  相似文献   

17.
Allylated PVC     
Active chlorines in poly(vinyl chloride) (PVC) were quantitatively replaced by pendant allyl groups ( CH2CHCH2) with allyltrimethylsilane in the presence of Friedel–Crafts acids (e.g., Et2AlCl and TiCl4). The thermal stability of the allylated PVCs was significantly superior to that of the starting material. Our allylation method is essentially quantitative; indeed, it was used for the determination of the active chlorine content in the PVCs. Furthermore, the pendant allyl groups were quantitatively oxidized by m‐chloroperbenzoic acid to epoxides; thus, PVCs carrying propylene oxide substituents [ CH2CH CH2(O)] were prepared. The structures of the products were characterized by high‐resolution NMR spectroscopy, and their thermal characteristics were characterized by TGA and color formation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 307–312, 2001  相似文献   

18.
This paper describes a method to obtain polymer blends by the absorption of a liquid solution of monomer, initiator, and a crosslinking agent in suspension type porous poly(vinyl chloride) (PVC) particles, forming a dry blend. These PVC/monomer dry blends are reactively polymerized in a twin‐screw extruder to obtain the in situ polymerization in a melt state of various blends: PVC/poly(methyl methacrylate) (PVC/PMMA), PVC/poly(vinyl acetate) (PVC/PVAc), PVC/poly(butyl acrylate) (PVC/PBA) and PVC/poly(ethylhexyl acrylate) (PVC/PEHA). Physical PVC/PMMA blends were produced, and the properties of those blends are compared to reactive blends of similar compositions. Owing to the high polymerization temperature (180°C), the polymers formed in this reactive polymerization process have low molecular weight. These short polymer chains plasticize the PVC phase reducing the melt viscosity, glass transition and the static modulus. Reactive blends of PVC/PMMA and PVC/PVAc are more compatible than the reactive PVC/PBA and PVC/PEHA blends. Reactive PVC/PMMA and PVC/PVAc blends are transparent, form single phase morphology, have single glass transition temperature (Tg), and show mechanical properties that are not inferior than that of neat PVC. Reactive PVC/PBA and PVC/PEHA blends are incompatible and two discrete phases are observed in each blend. However, those blends exhibit single glass transition owing to low content of the dispersed phase particles, which is probably too low to be detected by dynamic mechanical thermal analysis (DMTA) as a separate Tg value. The reactive PVC/PEHA show exceptional high elongation at break (~90%) owing to energy absorption optimized at this dispersed particle size (0.2–0.8 µm). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
熔融法制备聚氧化乙烯/蒙脱土杂化材料及其结晶行为   总被引:1,自引:0,他引:1  
聚氧化乙烯;熔融插入;纳米杂化;熔融法制备聚氧化乙烯/蒙脱土杂化材料及其结晶行为  相似文献   

20.
Four poly(butylene adipate) (PBA) polyesters, the structure ranging from linear to highly branched, were synthesized and solution casted with poly(vinyl chloride) (PVC) in 20 or 40 wt % concentrations to evaluate the influence of polyester chain architecture on miscibility, surface segregation, and mechanical properties. The miscibility of PVC and polyesters is based on specific interactions between the carbonyl group in the polyester and PVC. These interactions cause a shift in the carbonyl absorption band in the FTIR spectra. The shifting of the carbonyl absorption band was more significant for all the 40 wt % blends compared with the blends containing 20 wt % of the same polyester. In the 20 wt % blends surface segregation and enrichment of polyester at the blend surface increased as a function of branching. However, all the films containing 40 wt % of polyester had similar surface composition. This is explained by better miscibility and stronger intermolecular interactions in the 40 wt % blends, which counteract the effect of branching on the surface segregation. High degree of branching resulted in poor miscibility with PVC and poor mechanical properties. A linear or slightly branched polyester structure, however, resulted in good miscibility and desirable blend properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1552–1563, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号