首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have shown that stereocomplexed hydrogels can be rapidly formed in vitro as well as in vivo upon mixing aqueous solutions of eight-arm poly(ethylene glycol)-poly(l-lactide) (PEG-PLLA) and poly(ethylene glycol)-poly(d-lactide) (PEG-PDLA) star block copolymers. In this study, stereocomplexation and photopolymerization are combined to yield rapidly in situ forming robust hydrogels. Two types of methacrylate-functionalized PEG-PLLA and PEG-PDLA star block copolymers, PEG-PLLA-MA and PEG-PDLA-MA, which have methacrylate groups at the PLA chain ends and PEG-MA/PLLA and PEG-MA/PDLA, which have methacrylate groups at the PEG chain ends, were designed and prepared. Results showed that stereocomplexed hydrogels could be rapidly formed (within 1-2 min) in a polymer concentration range of 12.5-17.5% (w/v), in which the methacrylate group hardly interfered with the stereocomplexation. When subsequently photopolymerized, these hydrogels showed largely increased storage moduli as compared to the corresponding hydrogels that were cross-linked by stereocomplexation or photopolymerization only. Interestingly, the storage modulus of stereocomplexed-photopolymerized PEG-PLA-MA hydrogels increased linearly with increasing stereocomplexation equilibration time prior to photopolymerization (from ca. 6 to 32 kPa), indicating that stereocomplexation aids in photopolymerization. Importantly, photopolymerization of stereocomplexed hydrogels could take place at very low initiator concentrations (0.003 wt %). Swelling/degradation studies showed that combining stereocomplexation and photopolymerization yielded hydrogels with prolonged degradation times as compared to corresponding hydrogels cross-linked by photopolymerization only (3 vs 1.5 weeks). Stereocomplexed-photopolymerized PEG-MA/PLA hydrogels degraded much slower than corresponding PEG-PLA-MA hydrogels, with degradation times ranging from 7 to more than 16 weeks. Therefore, combining stereocomplexation and photopolymerization is a novel approach to obtain rapidly in situ forming robust hydrogels.  相似文献   

2.
冷冻/解冻制备的聚乙烯醇水凝胶的结构和流变性研究   总被引:3,自引:0,他引:3  
研究了冷冻/解冻法制备的不同浓度(5wt%~25wt%)聚乙烯醇(PVA)水凝胶的结构和流变行为之间的关系.由XRD确定了凝胶中PVA的结晶度和晶粒尺寸.用应力流变仪研究了凝胶的流变行为,包括动态模量和蠕变等.在频率为1Hz和低应力的条件下,测量了凝胶的储能模量和损耗模量.在该试验条件下,PVA水凝胶的形变是完全可以回复的.低频率区和低应变区的储能模量随浓度增加而变大,但当浓度超过20wt%时,储能模量增加速率明显降低.由PVA水凝胶在1Hz时的储能模量和结晶度的数据,理论分析得到了形成PVA水凝胶的最低PVA浓度和最小结晶度.当PVA浓度低于15wt%时,储能模量主要由PVA的微晶控制,分子链间的氢键影响很小.通过低应变区储能模量的数值计算出了凝胶网孔尺寸的结构参数.同时对不同温度下PVA水凝胶的储能模量数据进行了标度分析.PVA水凝胶的蠕变行为显示,随浓度提高,凝胶的蠕变黏弹性由线性向非线性转变.  相似文献   

3.
The aqueous solution behavior and thermoreversible gelation properties of pyridine‐end‐functionalized poly(ethylene glycol)–poly(L ‐lactide) (PEG–(PLLA)8–py) star block copolymers in the presence of coordinating transition metal ions were studied. In aqueous solutions, the macromonomers self‐assembled into micelles and micellar aggregates at low concentrations and formed physically crosslinked, thermoreversible hydrogels above a critical gel concentration (CGC) of 8% w/v. In the presence of transition metal ions like Cu(II), Co(II), or Mn(II), the aggregate dimensions increased. Above the CGC, the gel–sol transition shifted to higher temperatures due to the formation of additional crosslinks from intermolecular coordination complexes between metal ions and pyridine ligands. Furthermore, as an example, PEG–(PLLA)8–py hydrogels stabilized by Mn(II)–pyridine coordination complexes were more resistant against degradation/dissolution when placed in phosphate buffered saline at 37 °C when compared with hydrogels prepared in water. Importantly, the stabilizing effect of metal–ligand coordination was noticeable at very low Cu(II) concentrations, which have been reported to be noncytotoxic for fibroblasts in vitro. These novel PEG–(PLLA)8–py metallo‐hydrogels, which are the first systems to combine metal–ligand coordination with the advantageous properties of PEG–PLLA copolymer hydrogels, are appealing materials that may find use in biomedical as well as environmental applications like the removal of heavy metal ions from waste streams. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Aqueous solutions of syndiotacticity-rich poly(vinyl alcohol) (s-PVA) form gels easily. The optimum condition of growth of the calcium tartrate crystal formed by diffusing calcium chloride into hydrogels containing tartaric acid was studied with use ofs- PVA of a syndiotacticity of 56 % and a degree of polymerization of 1460. The crystal grew in the gel of the concentrations of 2 % s-PVA and of 0.5 N tartaric acid at pH=4. The relation between the formation of Liesegang rings and shear modulus of a gel was studied by diffusing silver nitrate into gels containing potassium chromate. The distance between rings decreased with increasing shear modulus of a gel in the range from 670 to 7500 dyne/cm2. The Liesegang rings were not formed for the shear modulus gel for 280 and 16200 dyne/cm2.  相似文献   

5.
Novel carboxymethyl chitosan‐polylactide (CMCS‐g‐PLA) hydrogels were prepared by using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride/N‐hydroxysuccinimide (EDC/NHS) as crosslinking agent and catalyst at room temperature. Solid‐state 13C‐NMR, SEM, and FT‐IR measurements showed that PLA blocks are successfully grafted onto the CMCS main chains. DSC measurements confirmed the effective crosslinking of carboxymethyl chitosan. With increasing the amount of EDC/NHS, the crosslink destiny of CMCS‐g‐PLA copolymers is improved. The swelling ratio of CMCS‐g‐PLA hydrogels is pH dependent, showing a minimum in the pH range of 3 to 5. Rheological studies confirmed the formation of hydrogels. The higher the crosslinking density, the higher the storage modulus of hydrogels. CMCS‐g‐PLA hydrogels only slightly degrade in PBS for 10 days. In the presence of lysozyme, however, hydrogels with low crosslink density are totally degraded in 10 days. Drug release studies show that after 96 h, 95% of thymopentin is released under in vitro conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Nucleation capacity of organically modified natural montmorillonite within the surface-treated banana fiber (BF)-reinforced PLA biocomposites has been studied using DSC analysis in the present investigation. Both the surface treatments and nanoclays play vital roles in the variation in nucleation process of PLA during cold crystallization process. Biocomposite made up of silane-treated BF and its bionanocomposite prepared using cloisite 30B (C30B) were showed superior nucleation parameters, n and K values, in the Avrami plots. Enhanced equilibrium melting point and lower E a suggests the reinforcing effect imparted by the BF surface treatments and C30B within the PLA matrix. Even though, Louritzen–Hoffmann theory was revealed that no change in crystallization regimes of PLA even after the biocomposite and bionanocomposite preparation. TG analysis revealed better heat barrier capacity for all the biocomposites and bionanocomposites in comparison with virgin PLA (V-PLA). Increased storage modulus values for biocomposites and bionanocomposites also confirm the reinforcing effects of the fillers. Heat deflection temperature and the flammability studies concluded better application window for newly developed materials than that V-PLA.  相似文献   

7.
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol–gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle’s intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.  相似文献   

8.
Atom transfer radical polymerization (ATRP) has been utilized to synthesize tri‐ and star‐block copolymers of poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) and quaternized poly(2‐(dimethylamino)ethyl methacrylate) (qPDMAEMA). The block copolymers, all with a minimum of two cationically charged blocks, were sequentially used for electrostatic macrocrosslinking of a dilute dispersion of anionic TEMPO‐oxidized cellulose nanofibrils (CNF, 0.3 wt%), forming free‐standing hydrogels. The cationic block copolymers adsorbed irreversibly to the CNF, enabling the formation of ionically crosslinked hydrogels, with a storage modulus of up to 2.9 kPa. The ability of the block copolymers to adsorb to CNF was confirmed by quartz crystal microbalance with dissipation monitoring (QCM‐D) and infrared spectroscopy (FT‐IR), and the thermoresponsive properties of the hydrogels were investigated by rheological stress and frequency sweep, and gravimetric measurements. This method was shown to be promising for the facile production of thermoresponsive hydrogels based on CNF. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3415–3424  相似文献   

9.
In this work, new ways of plasticizing polylactide (PLA) with low molecular poly(ethylene glycol) (PEG) were developed to improve the ductility of PLA while maintaining the plasticizer content at maximum 20 wt.% PLA. To this end, a reactive blending of anhydride-grafted PLA (MAG-PLA) copolymer with PEG, with chains terminated with hydroxyl groups, was performed. During the melt-processing, a fraction of PEG was grafted into the anhydride-functionalized PLA chains. The role of the grafted fraction was to improve the compatibility between PLA and PEG. Reactive extrusion and melt-blending of neat and modified PLA with PEG did not induce any dramatic drop of PLA molecular weight. The in situ reactive grafting of PEG into the modified PLA in PLA/PEG blends showed a clear effect on the thermal properties of PLA. It was demonstrated by DSC that the mobility gained by PLA chains in the plasticized blends yielded crystallization. The grafting of a fraction of PEG into PLA did not affect this process. However, DSC results obtained after the second heating showed an interesting effect on the Tg when 20 wt.% PEG were melt blended with neat PLA or 10 wt.% MAG-PLA. In the latter case, the Tg displayed by the reactive blend was shifted to even lower temperatures at around 14 °C, while the Tg of neat PLA and PLA blended with 20 wt.% PEG was around 60 and 23 °C, respectively. Regarding viscoelastic and viscoplastic properties, the presence of MAG-PLA does not significantly influence the behavior of plasticized PLA. Indeed, with or without MAG-PLA, elastic modulus and yield stress decrease, while ultimate strain increases with the addition of PEG into PLA.  相似文献   

10.
Preparing a polylactide (PLA)/plasticizer system has been regarded as an effective solution to improve the ductility of brittle PLA. In this reach, a novel type of alkyl phosphine oxides consisting of three aliphatic ester substituents was prepared from PH3 tail gas, and its potential to be employed as a PLA plasticizer was studied. Differential scanning calorimeter tests confirmed that the newly-prepared plasticizer decreased the Tg of PLA (28 wt% plasticizer) from 52°C (neat PLA) to 11°C, and increased the elongation at break from 11% (neat PLA) to 271% (plasticized PLA). X-ray diffraction results showed that the crystallization degree of PLA (28 wt% plasticizer) increased from 0.12% of neat PLA to 14.04%, while Young's modulus of PLA remained as high as 121.3 MPa, which was much higher than that of the PLA/citrate ester systems with same plasticizer content. These novel phosphorus-containing plasticizers exhibited excellent thermal stability and a weight-loss of the system no more than 2.5% at 180°C; therefore, no unpleasant volatiles were released during processing. In contrast, the weight loss of the PLA/citrate system was as high as 10.8% at 180°C, forming heavy fog with an unpleasant smell during thermal mixing. Scanning electron microscopy was employed to observe the microstructure of the PLA/plasticizer systems, which indicated that the carboxylic butyl ester-containing phosphine oxides was compatible with PLA matrix.  相似文献   

11.
Biodegradable copolymers of poly(lactic acid)‐block‐poly(ε‐caprolactone) (PLA‐b‐PCL) were successfully prepared by two steps. In the first step, lactic acid monomer is oligomerized to low molecular weight prepolymer and copolymerized with the (ε‐caprolactone) diol to prepolymer, and then the molecular weight is raised by joining prepolymer chains together using 1,6‐hexamethylene diisocyanate (HDI) as the chain extender. The polymer was carefully characterized by using 1H‐NMR analysis, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The results of 1H‐NMR and TGA indicate PLA‐b‐PCL prepolymer with number average molecular weights (Mn) of 4000–6000 were obtained. When PCL‐diols are 10 wt%, copolymer is better for chain extension reaction to obtain the polymer with high molecular weight. After chain extension, the weight average molecular weight can reach 250,000 g/mol, as determined by GPC, when the molar ratio of –NCO to –OH was 3:1. DSC curve showed that the degree of crystallization of PLA–PCL copolymer was low, even became amorphous after chain extended reaction. The product exhibits superior mechanical properties with elongation at break above 297% that is much higher than that of PLA chain extended products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of cassava pulp (CP) on morphological, tensile, and thermal properties of a thermoplastic cassava starch (TPS)/poly (lactic acid) (PLA) blend was investigated. TPS/PLA/CP biocomposites were manufactured by melt extrusion and then converted into specimens using an injection molding. The weight fraction of PLA to TPS/CP was fixed at 40:60, whereas the final CP concentration in the composites was varied in the range of 4.4–22.1 wt%. CP could act as a reinforcement for TPS/PLA blend to enhance its tensile strength up to 354% and Young's modulus up to 722% when 22.1 wt% of CP was loaded and a nucleating agent for PLA as confirmed from the reduced Tcc. In addition, TPS/PLA/CP composites showed a discrete phase structure (i.e., droplets in matrix) when CP with lower concentration (i.e., 4.4 wt%, 8.8 wt%, and 13.3 wt%) was incorporated and a bicontinuous phase structure (i.e., co-continuous) when higher concentration of CP (i.e., 17.7 wt% and 22.1 wt%) was employed. The results suggest that TPS/PLA/CP biocomposites have potential to be used in the manufacturing of injection-molded articles, particularly when biodegradability and renewability of the material are required.  相似文献   

13.
We introduce a cationic polyamidoamine (PAMAM) dendrimers and tetronic (Te) based hydrogels in which precursor copolymers were prepared with simple methods. In the synthetic process, tyramine-conjugated tetronic (TTe) was prepared via activation of its four terminal hydroxyl groups by nitrophenyl chloroformate (NPC) and then substitution of tyramine (TA) into the activated product to obtain TTe. Cationic PAMAM dendrimers G3.0 functionalized with p-hydroxyphenyl acetic acid (HPA) by use of carbodiimide coupling agent (EDC) to obtain Den-HPA. 1H-NMR confirmed the amount of HPA and TA conjugations. The aqueous TTe and Den-HPA copolymer solution rapidly formed the cationic hydrogels in the presence of horseradish peroxidase enzyme (HRP) and hydrogen peroxide (H2O2) at physiological conditions. The gelation time of the hydrogels could be modulated ranging from 7 to 73 secs, when the concentrations of HRP and H2O2 varied. The hydrogels exhibited minimal swelling degree and low degradation under physical condition. In vitro cytotoxicity study indicated that the hydrogels were highly cytocompatible as prepared at 0.15 mg/mL HRP and 0.063 wt% of H2O2 concentration. Heparin release profiles show that the cationic hydrogels can sustainably release the anionic anticoagulant drug. The obtained results demonstrated a great potential of the cationic hydrogels for coating medical devices or delivering anionic drugs.  相似文献   

14.
This study evaluates the effects of nucleants phenylphosphonic acid zinc (PPA-Zn) and talc, mold temperature, and microfibrillated cellulose (MFC) reinforcement in the acceleration of injection molding cycle of polylactic acid (PLA). PLA was dissolved in an organic solvent, mixed with nucleant and MFC, and dried compounds were injection molded into molds at temperatures ranging from 40 °C to 95 °C and holding times from 10 s to 120 s. Our results showed that PPA-Zn is more effective nucleating agent compared to talc. The addition of 1 wt% PPA-Zn and the mold temperature of 95 °C exhibited the fastest crystallization rates for the molded PLA, however, at this temperature the parts could not be quickly ejected without distortion. Addition of 10 wt% MFC increased the stiffness of PLA at high temperatures and allowed ejection of parts without distortion at a holding time of just 10 s. At this holding time, the crystallinity of the PLA composite was 15.3% but the storage modulus above T g was superior to that of fully crystallized neat PLA due to MFC reinforcement, retaining the shape of the molded part during demolding. The mechanical properties of the composite at room temperature were also higher than those of fully crystallized neat PLA.  相似文献   

15.
Two novel biodegradable copolymers, including poly(ethylene glycol)-succinate copolymer (PES) and poly(ethylene glycol)-succinate-l-lactide copolymer (PESL), have been successfully synthesized via melt polycondensation using SnCl2 as a catalyst. The copolymers were used to toughen PLA by melt blending. The DSC and SEM results indicated that the two copolymers were compatible well with PLA, and the compatibility of PESL was superior to that of PES. The results of tensile testing showed that the extensibility of PLA was largely improved by blending with PES or PESL. At same blending ratios, the elongation at break of PLA/PESL blends was far higher than that of PLA/PES ones. The elongation maintained stable through aging for 3 months. The moisture absorption of the blends enhanced due to the strong moisture absorption of PEG segments in PES or PESL molecules, which did not directly lead to enhance the hydrolytic degradation rate of the PLA. The PLA blends containing 20–30 wt% PES or PESL were high transparent materials with high light scattering. The toughening PLA materials could potentially be used as a soft biodegradable packaging material or a special optical material.  相似文献   

16.
In the perspective of producing a rigid renewable and environmentally friendly rigid packaging material, two comb-like copolymers of cellulose acetate (AC) and oligo(lactic acid) OLA, feeding different percentages of oligo(lactic acid) segments, were prepared by chemical synthesis in solvent or reactive extrusion in the melt, using a diepoxide as the coupling agent and were used as compatibilizers for poly(lactic acid)/plasticized cellulose acetate PLA/pAC blends. The blends were extruded at 230 °C or 197 °C and a similar compatibilizing behavior was observed for the different compatibilizers. The compatibilizer C1 containing 80 wt% of AC and 14 wt% of OLA resulted effective in compatibilization and it was easily obtained by reactive extrusion. Considering these results, different PLAX/pAC(100-X) compounds containing C1 as the compatibilizer were prepared by extrusion at 197 °C and tested in terms of their tensile and impact properties. Reference materials were the uncompatibilized corresponding blend (PLAX/pAC(100-X)) and the blend of PLA, at the same wt%, with C1. Significant increase in Young’s modulus and tensile strength were observed in the compatibilized blends, in dependence of their morphologic features, suggesting the achievement of an improved interfacial adhesion thanks to the occurred compatibilization.  相似文献   

17.
A new class of polylactic acid (PLA)/polyethylene glycol (PEG) copolymer reinforced with bacterial cellulose nanofibers (BC) was prepared using a solvent casting and particulate leaching methods. Four weight fractions of BC (1, 2.5, 5, and 10 wt%) were incorporated into copolymer via silane coupling agent. Mechanical properties were evaluated using response surface method (RSM) to optimize the impact of pore size, porosity, and BC contents. Compressive strength obtained for PLA/PEG-5 BC wt% was 9.8 MPa, which significantly dropped after developing a porous structure to 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PLA/PEG. Likewise, krenche and Hapli-Tasi model were employed to investigate the BC nanofiber reinforcement and BC orientation into PLA/PEG chains. The optimal parameters of the experiment results found to be 5 wt% for BC, 230 μm for pore size, and 80% for porosity. Scanning electron microscopy (SEM) micrograph indicates that uniform pore size and regular pore shape were achieved after an addition of BC-5% into PLA/PEG. The weight loss of copolymer-BC with scaffolds enhanced to the double values, compared with PLA/PEG-BC % without scaffolds. Differential Scanning Calorimetric (DSC) results revealed that the BC nanofiber improved glass transition temperature (Tg) 57 °C, melting temperature (Tm) 171 °C, and crystallinity (χ %) 43% of PLA/PEG reinforced-BC-5%.  相似文献   

18.
30 wt% aligned untreated long hemp fibre/PLA (AUL) and aligned alkali treated long hemp fibre/PLA (AAL) composites were produced by film stacking and subjected to accelerated ageing. Accelerated ageing was carried out using UV irradiation and water spray at 50 °C for four different time intervals (250, 500, 750 and 1000 h). After accelerated ageing, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and mode I fracture toughness (KIc) were found to decrease and impact strength (IS) was found to increase for both AUL and AAL composites. AUL composites had greatest overall reduction in mechanical properties than that for AAL composites upon exposure to accelerated ageing environment. FTIR analysis and crystallinity contents of the accelerated aged composites support the results of the deterioration of mechanical properties upon exposure to accelerated ageing environment.  相似文献   

19.
In order to improve the properties of wood flour (WF)/poly(lactic acid) (PLA) 3D-printed composites, WF was treated with a silane coupling agent (KH550) and acetic anhydride (Ac2O), respectively. The effects of WF modification and the addition of acrylicester resin (ACR) as a toughening agent on the flowability of WF/PLA composite filament and the mechanical, thermal, dynamic mechanical thermal and water absorption properties of fused deposition modeling (FDM) 3D-printed WF/PLA specimens were investigated. The results indicated that the melt index (MI) of the specimens decreased after WF pretreatment or the addition of ACR, while the die swell ratio increased; KH550-modified WF/PLA had greater tensile strength, tensile modulus and impact strength, while Ac2O-modified WF/PLA had greater tensile modulus, flexural strength, flexural modulus and impact strength than unmodified WF/PLA; after the addition of ACR, all the strengths and moduli of WF/PLA could be improved; after WF pretreatment or the addition of ACR, the thermal decomposition temperature, storage modulus and glass transition temperature of WF/PLA were all increased, and water absorption was reduced.  相似文献   

20.
A direct, efficient, and scalable method to prepare stereocomplexed polylactide (PLA)‐based nanoparticles (NPs) is achieved. By an appropriate combination of fabrication parameters, NPs with controlled shape and crystalline morphology are obtained and even pure PLA stereocomplexes (PLASC) are successfully prepared using the spray‐drying technology. The formed particles of varying d ‐ and l ‐LA content have an average size of ≈400 nm, where the smallest size is obtained for PLA50, which has an equimolar composition of PLLA and PDLA in solution. Raman spectra of the particles show the typical shifts for PLASC in PLA50, and thermal analysis indicates the presence of pure stereocomplexation, with only one melting peak at 226 °C. Topographic images of the particles exhibit a single phase with different surface roughness in correlation with the thermal analysis. A high yield of spherically shaped particles is obtained. The results clearly provide a proficient method for achieving PLASC NPs that are expected to function as renewable materials in PLA‐based nanocomposites and potentially as more stable drug delivery carriers.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号