首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of CO2 into more synthetically flexible CO is an effective and potential method for CO2 remediation, utilization and carbon emission reduction. In this paper, the reaction of carbon-carbon dioxide (the Boudouard reaction) was performed in a microwave fixed bed reactor using semi-coke (SC) as both the microwave absorber and reactant and was systematically compared with that heated in a conventional thermal field. The effects of the heating source, SC particle size, CO2 flow rate and additives on CO2 conversion and CO output were investigated. By microwave heating (MWH), CO2 conversion reached more than 99% while by conventional heating (CH), the maximum conversion of CO2 was approximately 29% at 900 °C. Meanwhile, for the reaction with 5 wt% barium carbonate added as a promoter, the reaction temperature was significantly reduced to 750 °C with an almost quantitative conversion of CO2. Further kinetic calculations showed that the apparent activation energy of the reaction under microwave heating was 46.3 kJ/mol, which was only one-third of that observed under conventional heating. The microwave-assisted Boudouard reaction with catalytic barium carbonate is a promising method for carbon dioxide utilization.  相似文献   

2.
微波辐射对TiO2制备及其光催化氧化乙醛性能的影响   总被引:5,自引:0,他引:5  
采用微波辐射与常规加热法由TiO2溶胶制备出TiO2催化剂,采用高频低功率微波-光催化装置考察了微波对两种催化剂上CH3CHO光催化氧化转化率和产物分布的影响。结果表明,微波干燥制备的TiO2晶体比普通加热制备的TiO2晶体对乙醛有更高的光催化活性和更强的氧化能力,且它们对乙醛光催化氧化的途径不同,前者的初始中间体为甲醛和甲酸,后者的初始中间体却为乙酸。还发现,微波辐射对两种样品上乙醛的光催化转化率有不同的影响,对微波辐射法所制样品的影响比对常规加热法所制样品的影响显著。微波辐射通过场效应可加速光催化初始中间体的转化,但它不改变光催化反应的途径,反应途径取决于光催化剂的特性。  相似文献   

3.
微波场对固态氧离子导体上的甲烷氧化偶朕的影响   总被引:2,自引:0,他引:2  
研究了微波场下甲烷在具有Bi2O3结构的固态氧离子导体上氧化偶联反应行为.与常规加热条件下的反应结果相比较,微波辐照下的反应有如下特点;(1)在达到相同甲烷转化率时,微波辐照下所需床层温度要远低于常规加热条件下所需床层温度;(2)微波辐照下,甲烷氧化偶联产物中C2烃的选择性普遍较高,在低温区尤为突出.微波场下甲烷偶联产物乙烷、乙烯的再氧化得到一定程度的抑制,致使微波场下的甲烷氧化偶联反应通常有较低的烯/烷比.  相似文献   

4.
The Fisher glycosidation of monosaccharides (d-glucose and d-mannose) with fatty alcohols was studied under microwave irradiation and conventional heating with strict internal temperature control using a fiber optic sensor. Surfactants were obtained in only 3 minutes under microwave at maximum power of 5 W to avoid overshoot and products decomposition. In contrast with the typical reported glycosidation methods, the reaction under conventional heating can be carried out at the same time and temperature with high conversion.  相似文献   

5.
Summary: This study reported the preparation and characterization of PCL-b-mPEG (poly(ε-caprolactone)-block-poly(ethylene glycol)) and PLL-b-mPEG (poly(L-lactide)-block-poly(ethylene glycol)) diblock copolymers by microwave heating and comparison of resulted products the ones with prepared by conventional heating. Diblock copolymers were synthesized successfully by the microwave-assisted ROP in the presence of stannous octoate (SnOct2) as catalyst under nitrogen atmosphere in different monomer ratios. Structural and functional characterization of copolymers were performed by FTIR, 1H-NMR and DSC. Molecular weight values were determined by GPC and also calculated from 1H-NMR. According to the results, microwave irradiation allowed to obtain polymers with very narrow size distribution in very short reaction time. Similar polymers prepared by conventional heating were also synthesized for comparison. Molecular weight and conversion of polymers were increased by irradiation time. This change was continued until a certain time point after which no more increase was observed. It was concluded that microwave irradiation is a succesful method to obtain these diblock copolymers in very short reaction time and with a similar conversion obtained by conventional method.  相似文献   

6.
5种烯丙基芳醚衍生物在无溶剂、无催化剂的条件下进行Claisen重排反应,采用了微波加热和常规加热方式,比较了同等温度下微波加热和常规加热反应速率的差异.结果表明微波加热可以显著提高烯丙基苯醚Claisen重排反应的速率.反应温度为190℃时,微波加热下反应速率可提高5~10倍.微波加热是一种无催化剂、高产率的Claisen重排反应的方法.  相似文献   

7.
房东旭  刘智焬  江治 《分子催化》2022,36(5):456-466
微波是一种能量传递方式。与传统电加热相比,微波加热具有加热速度快、热惯性小、选择性加热等特点,因而被视为一种优质的能量来源。微波催化是一种使用微波对反应系统供能,从而推动催化反应进行的化学过程。近年来,许多研究者致力于探索和发展微波催化技术,包括利用微波技术提升化学反应速率、开发具有出色微波吸收能力的催化剂、建立节能环保的微波催化系统等。本文首先介绍了微波的相关理论,讲述了材料对微波的吸收原理;然后从微波催化降解挥发性有机物(Volatile Organic Compounds, VOCs)、微波催化污水处理、微波催化生物质热解和微波催化碳氢化合物转化等方面综述了微波催化在能源环境中的应用;最后对微波催化过程的机理展开了讨论。  相似文献   

8.
Nitroxide-mediated free-radical miniemulsion polymerizations (NMRPs) of styrene were successfully performed under microwave irradiation at 135 °C. The polymerizations proceeded in a controlled manner, yielding polymers that showed an incremental increase in molecular weight with conversion and had narrow molecular weight distributions. The resulting latexes were colloidally stable. The polymerization behavior, molecular weights of polymers and Z-average size of latex particles were also investigated under two different heating methods, microwave irradiation and conventional heating.  相似文献   

9.
The microwave heat treatment of blocking layers for dye-sensitized solar cells has been investigated. It has been found that the solar cell efficiencies achieved with microwave heating were considerably higher than those achieved with conventional heating at low temperatures (100°C). This was attributed to microwave heating providing better sintering of the blocking layer and better interfacial contact between the substrate and the TiO2 layers. These results are promising with regard to the application of microwave heating to the production of dye-sensitized solar cells on flexible polymer substrates.  相似文献   

10.
微波诱导甲烷在活性炭/碳化硅上直接转化制C2烃   总被引:18,自引:0,他引:18  
 在高功率脉冲微波辐照下甲烷可在常压条件下在活性炭/碳化硅和活性炭碳化硅等 三种催化剂上直接转化为C2烃。研究结果表明,当使用合适的微波作用条件时,微波加热与微波 等离子协同作用可使甲烷在多孔碳化硅担载的活性炭催化剂上以很高的转化率和选择性直接转化为乙炔,除单独的微波加热诱导作用和微波等离子催化作用外,转移反应机制可能是微波加热与微波等离子交互作用的具体表现形式,对促进甲烷向乙炔直接转化起了重要作用。  相似文献   

11.
A facile one pot conversion of alkyl diacylacetates to 2,6-dichloro-3-formyl benzoates using Vilsmeier reagent in a two pronged strategy - conventional heating and microwave irradiation method is reported. The reaction time has been brought down from hours to seconds in microwave irradiation method.  相似文献   

12.
The preparation of activated carbon from sesame shells as raw precursor was investigated in the study by sequentially applying microwave and conventional heating methods assisted by zinc chloride activation. The optimizisation of experimental parameters including microwave power, microwave treatment time, conventional activation time, conventional activation temperature and zinc chloride concentration ratio for the microwave and conventional heating method was performed. The characterization of the prepared activated carbon was done by thermogravimetric and differential thermal measurements, infrared spectroscopy, scanning electron microscopy and specific surface area analyses. The maximum surface area of 1254?m2/g for the prepared activated carbon was obtained at a microwave power of 750?W, a microwave treatment time of 20?min, an activation time of 45?min, an activation temperature of 500°C and zinc chloride concentration ratio of 1:1. Methylene blue and iodine adsorption capacities for the prepared activated carbon were 103 and 1199?mg/g, respectively.  相似文献   

13.
微波辅助的金属氯化物Lewis酸催化纤维素水解   总被引:5,自引:2,他引:3  
研究了微波辐射下四种金属氯化物Lewis酸的催化纤维素酸水解反应性能,发现CuCl2的催化性能最好。反应温度、反应时间、微波功率、催化剂用量和酸种类对纤维素水解转化率、葡萄糖和5-羟甲基糠醛(5-HMF)的选择性均有明显影响。与传统热反应相比,微波辐射明显加快纤维素酸水解速率,提高葡萄糖的选择性。0.5g纤维素和15g水,在微波功率800W,温度到达225℃时立即停止反应的条件下,当CuCl2用量为0.05mmol时,纤维素转化率和葡萄糖选择性达72.6%和62.3%;当CuCl2用量为0.15mmol时,5-HMF的选择性最高为13.2%;当CuCl2用量为0.30mmol时,纤维素的转化率高达90.6%,但葡萄糖选择性只有6.7%。  相似文献   

14.
《Electrophoresis》2017,38(3-4):429-440
The impact of microwave irradiation on the in‐solution digestion processes and the detection limit of proteins are systematically studied. Kinetic processes of many peptides produced through the trypsin digestion of various proteins under microwave heating at 50°C were investigated with MALDI‐MS. This study also examines the detection limits and digestion completeness of individual proteins under microwave heating at 50°C and at different time intervals (1, 5 and 30 min) using LC‐MS. We conclude that if the peptides without missed cleavage dictate the detection limit, conventional digestion will lead to a better detection limit. The detection limit may not differ between the microwave and conventional heating if the peptides with missed cleavage sites and strong intensity are formed at the very early stage (i.e., less than 1 min) and are not further digested throughout the entire digestion process. The digestion of Escherichia coli lysate was compared under conventional and short time (microwave) conditions. The number of proteins identified under conventional heating exceeded that obtained from microwave heating over heating periods less than 5 min. The overall results show that the microwave‐assisted digestion is not complete. Although the sequence coverage might be better, the detection limit might be worse than that under conventional heating.  相似文献   

15.
微波辐照下(Bi_2O_3)_(0.8)(La_2O_3)_(0.2)固熔体对甲烷氧化偶联的催化行为陈长林,洪品杰,戴树珊,阚家德(云南大学化学系,昆明,650091)关键词微波,甲烷氧化偶联,(Bi_2O_3)_(0.8)(La_2O_3)_(0.2)甲烷氧化...  相似文献   

16.
Bin Shao 《Tetrahedron letters》2005,46(19):3423-3427
A series of acetylenic pyrimidines was synthesized and subjected to microwave irradiation. In contrast to conventional heating, the microwave irradiations generally gave clean conversion to fused bicyclic pyridines for all substrates reported with shorter reaction time. This method has been successfully applied to the synthesis of both fused lactones and lactams.  相似文献   

17.
在微波照射的相转移催化(MI-PTC)条件下,3种甲酰基功能化的交联聚苯乙烯树脂——对甲酰基苯氧基甲基树脂、对甲酰基-2-甲氧基苯氧基甲基树脂和对甲酰基-3-甲氧基苯氧基甲基树脂固载的甲酰基被NaBH4还原,得到相应的3种苄羟基功能化的树脂——Wang树脂、Sasrin树脂和新型的对苄羟基-3-甲氧基苯氧基甲基树脂.考察了溶剂、相转移催化剂等因素对反应的影响,优化的反应介质为THF/H2O混合溶剂,相转移催化剂为苄基三羟乙基氯化铵(BTHAC).然而,在传统加热和微波辐射条件下,最有效混合溶剂的配比有所不同.在水浴加热条件下,最有效的反应溶剂为12 mL THF+3 mL H2O;而在微波加热的条件下,最有效的反应溶剂却是3 mL THF+12 mL H2O.在优化的溶剂、催化剂条件下,微波功率为60 W时,高分子固载的甲酰基30 min之内几乎被定量地还原成羟基.与传统加热方式比较,MI-PTC还原聚苯乙烯固载甲酰基可以大大缩短反应时间,提高反应效率,是一种进行高分子化合物官能团转化的良好方法.  相似文献   

18.
A series of five known asymmetric organocatalytic reactions was re-evaluated at elevated temperatures applying both microwave dielectric heating and conventional thermal heating in order to probe the existence of specific or nonthermal microwave effects. All transformations were conducted in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using fiber-optic probes. In addition, the concept of simultaneous external cooling while irradiating with microwave power was also applied in all of the studied cases. This method allows a higher level of microwave power to be administered to the reaction mixture and, therefore, enhances any potential microwave effects while continuously removing heat. For all of the five studied (S)-proline-catalyzed asymmetric Mannich- and aldol-type reactions, the observed rate enhancements were a consequence of the increased temperatures attained by microwave dielectric heating and were not related to the presence of the microwave field. In all cases, in contrast to previous literature reports, the results obtained either with microwave irradiation or with microwave irradiation with simultaneous cooling could be reproduced by conventional heating at the same reaction temperature and time in an oil bath. No evidence for specific or nonthermal microwave effects was obtained.  相似文献   

19.
Epoxids are efficiently converted to the corresponding thiiranes by ammonium thiocyanate (NH 4 SCN) in the presence of catalytic amounts of oxalic acid with excellent isolated yields under mild and nonaqueous reaction conditions. This conversion performed under both conventional heating and microwave conditions. Distinct rate enhancement is observed under microwave irradiation.  相似文献   

20.
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号