首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
New models have been developed relating the modulus of vulcanizates and volume fraction of filler. The models take into account the shape of filler particles and the modulus of the interphase. The usefulness of these models has been verified by determination of dynamic modulus for a series of vulcanizates. The new models have been compared with the well known models of Guth, Takayanagi, Sato and Furukawa.  相似文献   

2.
Effects of precipitated silica (PSi) and silica from fly ash (FA) particles (FASi) on the cure and mechanical properties before and after thermal and oil aging of natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) blends with and without chloroprene rubber (CR) or epoxidized NR (ENR) as a compatibilizer have been reported in this paper. The experimental results suggested that the scorch and cure times decreased with the addition of silica and the compound viscosity increased on increasing the silica content. The mechanical properties for PSi filled NR/NBR vulcanizates were greater than those for FASi filled NR/NBR vulcanizates in all cases. The PSi could be used for reinforcing the NR/NBR vulcanizates while the silica from FA was regarded as a semi‐reinforcing and/or extending filler. The incorporation of CR or ENR enhanced the mechanical properties of the NR/NBR vulcanizates, the ENR being more effective and compatible with the blend. The mechanical properties of the NR/NBR vulcanizates were improved by post‐curing effect from thermal aging but deteriorated by the oil aging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

4.
In elastomer/organo clay nanocomposites, the morphological characteristics, and hence the mechanical properties, of the vulcanizates are strongly influenced by the organic modifier and the vulcanization process. When the elastomer itself undergoes strain‐induced crystallization, both the organic modifier and the dispersed filler particles could significantly influence the crystallization process. These phenomena are very common in case of natural rubber‐based vulcanizates. In this study, the similar effects have been demonstrated with carboxylated nitrile rubber (XNBR) and organically modified layered double hydroxide (O‐LDH)‐based nanocomposites. The effect of size of the organic modifier was obviously visible on the interlayer distance of O‐LDH and also on the morphological reorganization of the dispersed O‐LDH particles during vulcanization process. The strain‐induced crystallization of the XNBR was found to be strongly dependent on the morphological change that occurs during vulcanization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

5.
The effects of the oriented fiber filler particles on the microscopic properties of the matrix network chains were investigated by using nanofiber filler particles as reinforcing material. Monte Carlo Rotational Isomeric State simulations were carried out for filled poly(ethylene) (PE) networks to study the dependence of the conformational distribution functions of polymer chains and their elastomeric properties on filler loadings. We were especially interested how the excluded volume effect of the nanofiber particles and their orientation (specifically orientational anisotropy) in the matrix influence elastomeric properties of the network. Distribution functions of the end-to-end distances of polymer chains for both unfilled and filled networks were calculated. Effects of nanofiber reinforcements with varying fiber radii and fiber volume fractions were investigated. We have found that the presence of nanofibers significantly increase the non-Gaussian behavior of polymer chains in the composite. The anisotropic effects of the nanofibers on mechanical properties of polymeric composites were studied as a function of their relative orientation to the direction of deformation. The modulus (reduced nominal stress per unit strain) was calculated from the distribution of end-to-end distances of polymer chains using the Mark–Curro method. Relatively small amount of nanofibers was found to increase the normalized moduli of the composite. Our results are quite in satisfactory qualitative agreement with experimental data reported in the literature. This shows that computer simulations provide a powerful tool in predicting physical properties of composite materials.  相似文献   

6.
《先进技术聚合物》2018,29(2):716-725
Foaming of trans‐1,4‐polyisoprene (TPI) polymer was carried out through a batch process using nitrogen (N2) as the blowing agent. TPI vulcanizates having varying crosslink densities were prepared by varying crosslinking agent content and curing time. The vulcanizates were then saturated with N2 inside a pressure vessel at a pressure of 14 MPa and varying temperatures for 5 hours before effecting the foaming by rapidly quenching the pressure. The effects of varying the crosslinking agent content, silica filler content, and precuring time of the vulcanizates and the effects of varying the gas saturation temperature of foaming on the cell characteristics and physical properties of the foam prepared were investigated. The cells of the TPI foams had a spherical, closed structure. The density, expansion ratio, cell size, cell density, and tensile properties of the foams varied with varying crosslink density of the TPI vulcanizates as well as the saturation temperature of foaming. The important effects of crosslink density and saturation temperature on the N2 solubility in the TPI matrix and thus on the foam expansion were discussed. The silica filler was found to be acting as a cell nucleating agent and reinforcing filler for the TPI foams.  相似文献   

7.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Silica has long been recognized as a reinforcing filler, especially for light colored products. The degree of reinforcement is noticeably increased when silica is used in combination with silane coupling agent. Therefore, various types of silane coupling agents are now commercially available. In the present study, two types of silane coupling agents, e.g., bis-(3-triethoxysilylpropyl) tetrasulfane (Si-69) and 3-thiocyanatopropyl triethoxy silane (Si-264) were selected for comparison of their reinforcing efficiency in a conventional vulcanization (CV) system. The results reveal that the addition of silane coupling agent not only improves compound processability, but also enhances the mechanical properties of the rubber vulcanizates. Compared with Si-69, Si-264 gives rubber compounds with better processability due to its greater ability to promote filler dis-agglomeration during mixing. In addition, Si-264 also imparts a greater degree of reinforcement. This might be attributed to the combined effects of better rubber–filler interaction, better filler dispersion and higher state of cure which are obtained when Si-69 is replaced with Si-264. The dynamic properties of the rubber vulcanizates are also improved with the presence of silane coupling agent. In this aspect, Si-69 performs better than Si-264 as it provides rubber vulcanizates with lower heat build-up.  相似文献   

9.
研究了反式-1,4-丁二烯-异戊二烯共聚橡胶(TBIR)应用于航空轮胎胎侧胶[天然橡胶(NR)/顺丁橡胶(BR)/TBIR]的耐热氧老化性能.结果表明,与NR/BR硫化胶相比,10~20份质量的TBIR取代BR后,NR/BR/TBIR硫化胶的交联密度明显提高,压缩温升降低2. 2~3. 4℃,耐屈挠疲劳性能提高约100%,填料分散性改善,填料团聚体体尺寸减小,拉伸性能基本不变.随热氧老化时间延长,硫化胶的交联密度先增加后降低,并用TBIR的硫化胶交联密度在老化48 h后趋于平缓.与NR/BR相比,老化后的NR/BR/TBIR硫化胶生热最低,耐屈挠疲劳性最高.  相似文献   

10.
Glucose at various concentrations was incorporated into sugar free purified natural rubber (PNR) latex to model the effect of carbohydrate on the basic characteristics and physical properties of natural rubber (NR). PNR samples treated with various concentrations of glucose were characterized for the basic properties of unvulcanized NR, i.e., gel content, molecular weight distribution and Mooney viscosity to evaluate the effect of sugar on these parameters. In addition, the effect of glucose on the physical properties of vulcanizates derived using sulfur and peroxide vulcanization was investigated. Glucose was shown to affect the viscosity of unvulcanized NR and the discoloration of vulcanized NR. Moreover, glucose was found to have a strong effect on crosslink density, as well as tensile and dynamic properties of sulfur vulcanizates, while those properties of peroxide vulcanizates was not much affected by glucose.  相似文献   

11.
The electric properties of carbon-black-filled, fiberglass reinforced thermoplastic composites with unidirectional and random structure were studied. Their samples were prepared according to various manufacturing processes: injection molding, molding, press molding, winding, and pultrusion. It was shown that the electric properties of the composites are determined by the character of distribution of filler particles in the polymer matrix, which is closely related to the blending parameters and the engineering properties of the material.  相似文献   

12.
Dynamic properties such as shear modulus, loss modulus, and loss factor were obtained at a low strain amplitude over a wide range of frequencies and temperatures on vulcanizates filled with carbon black, silica, and carbon–silica dual‐phase filler. The data were shifted along the frequency scale. Instead of a single smooth master curve, a pseudomaster curve with a feather‐like structure is obtained. This effect is especially pronounced for the loss factor. Multiple factors may be responsible for this. Among others, filler networking and polymer–filler interaction may play a dominant role. The effect of the carbon–silica dual‐phase filler on the overall dynamic properties of the vulcanizates is similar to that of silica. Their tan δ values are much lower at lower frequencies and are relatively higher at higher frequencies. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1240–1249, 2000  相似文献   

13.
The effect of mineral fillers such as Ultrasil VN-3, Ze?O?Sil P-45, Aerosil 200, Frantex 8, Kaolin and precipitated calcium carbonate on the thermal properties sulphur vulcanizates ofcis-1,4-polyisoprene were studied by means of thermal analysis. It was found that the addition of a mineral filler did not change the nature of the thermal processes in isoprene vulcanizates essentially, but it distinctly affected the positions of the peaks recorded in the DTA curves. The mineral fillers affected the temperatures and rates of degradation and destruction of polyisoprene cross-linked with sulphur. The presence of a mineral filler brought about a decrease in the flammability ofcis-1,4-polyisoprene sulphur vulcanizates.  相似文献   

14.
电响应聚合物薄膜的表面图案化   总被引:9,自引:0,他引:9  
研究了炭黑(CB)和石墨(GP)填充高密度聚乙烯(HDPE)复合体系的动态流变行为.发现高填料含量时出现似固体行为,并认为它归因于无机粒子网络逾渗结构的形成.在相同聚合物基体条件下,粒子种类和粒子几何参数(粒子形状、大小、粒径分布)对低频区域流变行为、流变参数的逾渗行为和逾渗阈值(φc)有决定性影响,且种类的影响相比于粒子几何参数更为显著.此外,高表面活性及高比表面积(大径厚比、小尺寸)粒子填充体系具有较低的φc.  相似文献   

15.
研究了炭黑(CB)和石墨(GP)填充高密度聚乙烯(HDPE)复合体系的动态流变行为.发现高填料含量时出现似固体行为,并认为它归因于无机粒子网络逾渗结构的形成.在相同聚合物基体条件下,粒子种类和粒子几何参数(粒子形状、大小、粒径分布)对低频区域流变行为、流变参数的逾渗行为和逾渗阈值(φc)有决定性影响,且种类的影响相比于粒子几何参数更为显著.此外,高表面活性及高比表面积(大径厚比、小尺寸)粒子填充体系具有较低的φc.  相似文献   

16.
Natural rubber vulcanizates undergo severe corrosion when exposed to nitric acid. The nature and extent of damage with increasing degree of corrosion has been assessed by studies on the fall in mechanical properties, such as tensile strength and tear strength, and examination of scanning electron microscopy photomicrographs of the fracture surfaces of tensile and tear samples, both before and after acid treatment. It has been observed that, in the case of inert fillers, which simply dilute the rubber matrix, the filled vulcanizates disintegrate, on acid treatment, more quickly than the unfilled vulcanizates but that, when the filler is reinforcing, this effect is largely overshadowed by polymer-filler interaction which restricts acid corrosion.  相似文献   

17.
The article presents the effect of attapulgite (ATT) and its synergic action with carbon or silica on the thermal properties and flammability of cross-linked styrene–butadiene rubber. It has been shown that ATT is active filler improving the thermal and mechanical properties of composites containing this aluminosilicate. The decreased flammability of vulcanizates containing ATT compared to that of unfilled vulcanizates results from good insulating properties of the ATT used. The considerable reduction in the flammability of composites containing ATT and carbon nanofiber or silica is connected, first of all, with the formation of a homogeneous boundary layer.  相似文献   

18.
Commercially, the alteration of a rubber formulation is usually made in such a way as to keep the hardness of the rubber product constant. This is because a specific hardness of the rubber product sets the limit to its practical applications. Therefore, in this paper, natural rubber (NR) vulcanizates containing various fillers were prepared to have the same hardness level, and their mechanical properties were compared and related to the degree of filler dispersion. The results show that higher amounts of carbon black (CB) and silica are needed for CB- and silica-filled natural rubber vulcanizates to achieve the same hardness value as a NR vulcanizate containing 6 phr of montmorillonite clay. At equal loading of fillers, clay-filled vulcanizate exhibits higher modulus, hardness, tensile strength and compression set, but lower heat build-up resistance and crack growth resistance than those of the vulcanizates containing conventional fillers. For the vulcanizate having the same hardness value, CB-filled vulcanizate gives the better overall mechanical properties followed by the clay-filled and silica-filled vulcanizates, respectively. The explanation is given as the better dispersion of carbon black, as can be seen in the SEM micrograph.  相似文献   

19.
The article presents the results of testing thermal properties and combustibility of butadieneacrylonitrile rubber with 18% contents of bounded acrylonitrile, NBR 18. Two types of silica, Zeosil 175C and Ultrasil VN-3, with different specific surfaces were used as filler. Zeosil 175C and Ultrasil VN-3 were modified via cryogenic dezaggregation method. The activity of unmodified and cryogenic modified silica toward butadiene-acrylonitrile rubber were investigated. The sulphur and peroxide vulcanizates contained 20, 30, 40, and 50 phr. of the filler were studied. The article discusses also the test results of thermal stability and flammability of NBR 18 containing silica prepared "in situ" from alkoxysilane precursor. The test results were obtained with the use of derivatograph, measurements of flammability by the method of oxygen index, and in air. The effect of the silica modification on the SEM and AFM was also examined. The method of cryogenic modification enables to achieve increase of mineral fillers activity towards elastomer and reduction in the flammability of NBR 18 vulcanizates. It has been found that the modification of the vulcanizates of NBR 18 with tetraethoxysilane that makes it possible to form silica "in situ" reduces the flammability of cross-linked rubbers.  相似文献   

20.
We present a coarse-graining procedure to construct models of amorphous polymers. The method, which was applied to polyethylene, is based on a generation-relaxation strategy previously developed to provide independent atomistic microstructures. The coarse-graining was performed by assigning positions to mesoscopic particles denoted blobs, which represent groups of atoms, through distance, angle and dihedral distribution functions. The interaction energy between pairs of blobs was evaluated through a soft potential, whose parameters were derived from atomistic models. Three levels of coarse-graining that differ in the number of atoms included in the blob have been considered. The structural and energy-related properties calculated using the coarse-grained models developed in this study are in good agreement with those obtained using atomistic simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号