首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Worldwide, landfills are the most common way to dispose of waste, but have an impact on the environment as a result of harmful gas and leachate production. Estimating the long-term behaviour of a landfill in regard to this gas production and organic degrading, as well as to settlement and waste water production, is of high importance. Therefore, a model has been developed to simulate these processes. This constitutive model is based on the multiphase Theory of Porous Media. The body under investigation consists of an organic and an inorganic phase as well as a liquid and a gas phase. The equations of the model are developed on the basis of a consistent thermo-mechanical approach including the momentum balance for the solid phase and the mixture, the energy balance for the mixture and the mass balance for the gas phase. All interactions between the constituents such as mass transfers, interaction forces and energy fluxes are taken into consideration. The strongly coupled set of partial differential equations is implemented in the finite element code FEAP. The theoretical framework and the results of meantime successfully performed simulation of a real landfill body will be shown. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We prove existence of solutions of a two-compressible (liquid and gas) phase flow model in porous media with two components (water and hydrogen). This model is obtained by writing the mass conservation for each component in each phase. We suppose that the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. This mass exchange is modeled by a source term on each mass conservation equations.  相似文献   

3.
研究了孔隙介质中包括热和质量传递的全耦合多相流问题的代数多格子分析方法。数学模型包括质量、线性矩、能量平衡方程和本构方程,以位移、毛细压力、汽压和温度为基本变量,模型中采用了考虑毛细压力关系的修正有效应力概念,并考虑相变、热传导、对流和潜热交换(汽化-冷凝),气相是由易混合的干空气和水蒸气组成,视为理想气体。考题显示出较高的计算效率。  相似文献   

4.
The paper is devoted to the homogenization of immiscible compressible two-phase two-component flow in heterogeneous porous media. We consider liquid and gas phases, two-component (water and hydrogen) flow in a porous reservoir with periodic microstructure, modeling the hydrogen migration through engineered and geological barriers for a deep repository for radioactive waste. Phase exchange, capillary effects included by the Darcy–Muskat law and Fickian diffusion are taken into account. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water obeying the Henry law. The flow is then described by the conservation of the mass for each component. The microscopic model is written in terms of the phase formulation, i.e. the liquid saturation phase and the gas pressure phase are primary unknowns. This formulation leads to a coupled system consisting of a nonlinear parabolic equation for the gas pressure and a nonlinear degenerate parabolic diffusion–convection equation for the liquid saturation, subject to appropriate boundary and initial conditions. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, we obtain a nonlinear homogenized problem with effective coefficients which are computed via a cell problem. We rigorously justify this homogenization process for the problem by using the two-scale convergence.  相似文献   

5.
Mould filling process is a typical gas–liquid metal two phase flow phenomenon. Numerical simulation of the two phase flows of mould filling process can be used to properly predicate the back pressure effect, the gas entrapment defects, and better understand the complex motions of the gas phase and the liquid phase. In this paper, a novel sharp interface incompressible two phase numerical model for mould filling process is presented. A simple ghost fluid method like discretization method and a density evaluation method at face centers of finite difference staggered grid are proposed to overcome the difficulties when solving two phase Navier–Stokes equations with large-density ratio and large-viscosity ratio. A new mass conservation particle level set method is developed to capture the gas–liquid metal phase interface. The classical pressure-correction based SOLA algorithm is modified to solve the two phase Navier–Stokes equations. Two numerical tests including the Zalesak disk problem and the broken dam problem are used to demonstrate the accuracy of the present method. The numerical method is then adopted to simulate three mould filling examples including two high speed CCD camera imaging water filling experiments and an in situ X-ray imaging experiment of pure aluminum filling. The simulation results are in good agreement with the experiments.  相似文献   

6.
以混合物理论为基础建立了高温作用下混凝土的热-水-力耦合损伤分析模型.将混凝土视为由固体骨架、液态水、水蒸气、干燥气体和溶解气体共5种组分构成的混合物,模型的宏观平衡方程包括各组分的质量守恒方程、整体的能量守恒方程及动量守恒方程,模型所需的状态方程及本构关系全部给出,最后给出基于4个主要参数(固体骨架位移、气压力、毛细压力和温度)的控制方程.模型考虑了混凝土在高温作用下,水分的蒸发与冷凝、胶结材料的水化及脱水、溶解气的溶解与挥发等相变过程;从材料变形破坏过程中能量耗散特征入手,基于Lemaitre应变等价性假说和能量守恒原理得到力学损伤演化方程,并考虑了高温引起的热损伤对材料力学性能及力学损伤演化规律的影响,建立了热-力耦合损伤本构模型.  相似文献   

7.
Gas jets impinging onto a gas–liquid interface of a liquid pool are studied using computational fluid dynamics modelling, which aims to obtain a better understanding of the behaviour of the gas jets used metallurgical engineering industry. The gas and liquid flows are modelled using the volume of fluid technique. The governing equations are formulated using the density and viscosity of the “gas–liquid mixture”, which are described in terms of the phase volume fraction. Reynolds averaging is applied to yield a set of Reynolds-averaged conservation equations for the mass and momentum, and the kε turbulence model. The deformation of the gas–liquid interface is modelled by the pressure jump across the interface via the Young–Laplace equation. The governing equations in the axisymmetric cylindrical coordinates are solved using the commercial CFD code, FLUENT. The computed results are compared with experimental and theoretical data reported in the literature. The CFD modelling allows the simultaneous evaluation of the gas flow field, the free liquid surface and the bulk liquid flow, and provides useful insight to the highly complex, and industrially significant flows in the jetting system.  相似文献   

8.
9.
Unsteady-state or transient two-phase flow, caused by any change in rates, pressures or temperature at any location in a two-phase flow line, may last from a few seconds to several hours. In general, these changes are an order of magnitude longer than the transient encountered during single-phase flow. The primary reason for this phenomenon is that the velocity of wave propagation in a two-phase mixture is significantly slower. Interfacial transfer of mass, momentum and energy further complicate the problem. It is primarily due to the numerical difficulties anticipated in accurately modeling transient two-phase flow that the state of the art in this important area is restricted to a handful of studies with direct applicability to petroleum and gas engineering. A limited amount of information on the subject of two-phase transport phenomena is available in the petroleum engineering literature. Most of the publications for two-phase flow of gas assume that temperature is constant over the entire length of the pipeline.This study is the first effort to simulate the non-isothermal, one-dimensional, transient homogenous two-phase flow gas pipeline system using two-fluid conservation equations. The modified Peng–Robinson equation of state is used to calculate the vapor–liquid equilibrium in multi-component natural gas to find the vapor and liquid compressibility factors. Mass transfer between the gas and the liquid phases is treated rigorously through flash calculation, making the algorithm capable of handling retrograde condensation. The liquid droplets are assumed to be spheres of uniform size, evenly dispersed throughout the gas phase.The method of solution is the fully implicit finite difference method. This method is stable for gas pipeline simulations when using a large time step and therefore minimizes the computation time. The algorithm used to solve the non-linear finite difference thermo-fluid equations for two-phase flow through a pipe is based on the Newton–Raphson method.The results show that the liquid condensate holdup is a strong function of temperature, pressure, mass flow rate, and mixture composition. Also, the fully implicit method has advantages, such as the guaranteed stability for large time step, which is very useful for simulating long-term transients in natural gas pipeline systems.  相似文献   

10.
11.
This paper presents a study of immiscible compressible two‐phase, such as water and gas, flow through double porosity media. The microscopic model consists of the usual equations derived from the mass conservation laws of both fluids, along with the standard Darcy–Muskat law relating the velocities to the pressure gradients and gravitational effects. The problem is written in terms of the phase formulation, that is, where the phase pressures and the phase saturations are primary unknowns. The fractured medium consists of periodically repeating homogeneous blocks and fractures, where the absolute permeability of the medium becomes discontinuous. Consequently, the model involves highly oscillatory characteristics. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. We obtain the convergence of the solutions, and a macroscopic model of the problem is constructed using the notion of two‐scale convergence combined with the dilatation technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, modelling gas–liquid bubbly flows is achieved by the introduction of a population balance equation combined with the three-dimensional two-fluid model. For gas–liquid bubbly flows without heat and mass transfer, an average bubble number density transport equation has been incorporated in the commercial code CFX5.7 to better describe the temporal and spatial evolution of the geometrical structure of the gas bubbles. The coalescence and breakage effects of the gas bubbles are modelled according to the coalescence by the random collisions driven by turbulence and wake entrainment while for bubble breakage by the impact of turbulent eddies. Local radial distributions of the void fraction, interfacial area concentration, bubble Sauter mean diameter, and gas and liquid velocities, are compared against experimental data in a vertical pipe flow. Satisfactory agreements for the local distributions are achieved between the predictions and measurements. For gas–liquid bubbly flows with heat and mass transfer, boiling flows at subcooled conditions are considered. Based on the formulation of the MUSIG (multiple-size-group) boiling model and a model considering the forces acting on departing bubbles at the heated surface implemented in the computer code CFX4.4, comparison of model predictions against local measurements is made for the void fraction, bubble Sauter mean diameter, interfacial area concentration, and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcooling temperatures. Good agreement is achieved with the local radial void fraction, bubble Sauter mean diameter, interfacial area concentration and liquid velocity profiles against measurements. However, significant weakness of the model is evidenced in the prediction of the vapour velocity. Work is in progress through the consideration of additional momentum equations or developing an algebraic slip model to account for the effects of bubble separation.  相似文献   

13.
This paper discusses optimization of natural gas production using waterflooding of a gas reservoir. The functions governing the rate of gas withdrawal and the rate of water injection control the operation of the reservoir. These, together with volume and mass balance and the ideal gas law, give a simple system of ordinary differential equations modelling the reservoir. We use several physical and economic definitions of an optimal production rate. Under each definition, we establish the optimal controls. The relation between prices of water and natural gas and the optimal controls is discussed.Work performed under the auspices of the Energy Research and Development Administration.  相似文献   

14.
A mixing chamber used in rocket engine testing at the NASA Stennis Space Center is modelled by a system of two nonlinear ordinary differential equations. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. Mixer operation during a test requires the regulation of its internal pressure, exit mass flow, and exit temperature. A mathematical model is developed to facilitate subsequent controller designs. The model must be simple enough to lend itself to subsequent feedback controller design, yet its accuracy must be tested against real data. For this reason, the model includes function calls to thermodynamic property data. Some structural properties of the resulting model that pertain to controller design, such as uniqueness of the equilibrium point, feedback linearizability and local stability are shown to hold under conditions having direct physical interpretation. The existence of fixed valve positions that attain a desired operating condition is also shown. Validation of the model against real data is likewise provided.  相似文献   

15.
In this work a two phase 3D mathematical model was developed using the volume of fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet that impinges on a liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The model was successfully validated with measurements made on a physical model through velocity fields obtained by Particle Image Velocimetry (PIV) and high speed camera images of the cavity. Agreement between model predictions and experimental measurements is excellent in both x-velocity component of the liquid and cavity sizes. The cavity formed in the liquid by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs this phenomena, while the liquid circulation depends on also the jet inertial force of the jet, but its angle plays an important role, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquid.  相似文献   

16.
In the present article, we study the temperature effects on two‐phase immiscible incompressible flow through a porous medium. The mathematical model is given by a coupled system of 2‐phase flow equations and an energy balance equation. The model consists of the usual equations derived from the mass conservation of both fluids along with the Darcy‐Muskat and the capillary pressure laws. The problem is written in terms of the phase formulation; ie, the saturation of one phase, the pressure of the second phase, and the temperature are primary unknowns. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, we show the existence of weak solutions with the help of an appropriate regularization and a time discretization. We use suitable test functions to obtain a priori estimates. We prove a new compactness result to pass to the limit in nonlinear terms.  相似文献   

17.
Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of these quantities are not known. This work presents a systematic derivation of mass, momentum and energy densities and fluxes associated with a general family of Boussinesq systems. The derivation is based on a reconstruction of the velocity field and the pressure in the fluid column below the free surface, and the derivation of differential balance equations which are of the same asymptotic validity as the evolution equations. It is shown that all these mechanical quantities can be expressed in terms of the principal dependent variables of the Boussinesq system: the surface excursion ?? and the horizontal velocity w at a given level in the fluid.  相似文献   

18.
A. Acartürk  W. Ehlers  B. Markert 《PAMM》2006,6(1):123-124
Biological soft tissues exhibit a swelling behaviour and consist of multiple phases, a solid phase composed of collgagen fibers and charged PGA chains and a fluid phase composed of the liquid solvent and the ions of dissolved salt. In this contribution, the Theory of Porous Media (TPM) model consists of four constituents, a charged solid and an aqueous solution composed of water and the ions of dissolved salt. The solid is modelled by a finite elasticity law accounting for the multiphasic micro structure, whereas the fluid is considered as a viscous Newtonian fluid. One finally ends up with the volume balance of the fluid, the concentration balance of the cations, the momentum balance of the overall mixture. The resulting set of partial differential equations is solved within the framework of the FEM. Therefore, the weak forms are derived and the resulting set of equations for the primary variables pore pressure p, cation concentration c and solid displacement u S , is implemented into the FE tool PANDAS. Finally, a three dimensional example of a swelling hydrogel disc is shown. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Heat and mass transport is modeled in convective flow of a dilute binary mixture of a continuous fluid with mono-dispersed particles (PCM suspensions), in which solid–liquid phase change can take place. The model is based on the mixture continuum approach together with an approximate enthalpy formulation, in which the temporal and spatial variations of phase change fraction in the particles are considered explicitly. Derivations are given for a set of equations governing conservation of mass, momentum, species, and energy of the suspensions, as well as the evolution of phase change fraction of the dispersed particles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号