首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research, an optimal hydrogel, based on sulfonated polyacrylamide, was synthesized by statistical design of experiments using central composite method. This new hydrogel composed of sulfonated polyacrylamide (AN125VLM) and chromium triacetate as copolymer and crosslinker, respectively. The bottle and rheological tests were conducted to investigate the gelation time, thermal stability, gel strength and also ultimate elastic modulus, complex modulus, and yield stress. It was found that copolymer concentration had the main effect in both rheological and transport properties of hydrogels. The sample prepared at optimum condition, i.e. copolymer concentration of 26,340 ppm and crosslinker/copolymer ratio of 0.12, had an ultimate elastic modulus of 29.9 kPa, yield stress of 800 Pa, and complex modulus of 32 kPa. A coreflooding test through fracture was carried out to examine the optimum gel performance in a porous media. A value of 483 for the residual resistance factor ratio of water to oil confirmed the high ability of the hydrogel in reducing the relative permeability of water to oil in fractured media. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

3.
Microenvironmental factors, including substrate stiffness, regulate stem cell behavior and differentiation. However, the effects of substrate stiffness on the behavior of induced pluripotent stem cell (iPSC)- derived embryoid bodies (EB) remain unclear. To investigate the effects of mechanical cues on iPSC-EB differentiation, a 3D hydrogel-sandwich culture (HGSC) system is developed that controls the microenvironment surrounding iPSC-EBs using a stiffness-tunable polyacrylamide hydrogel assembly. Mouse iPSC-EBs are seeded between upper and lower polyacrylamide hydrogels of differing stiffness (Young's modulus [E’] = 54.3 ± 7.1 kPa [hard], 28.1 ± 2.3 kPa [moderate], and 5.1 ± 0.1 kPa [soft]) and cultured for 2 days. HGSC induces stiffness-dependent activation of the yes-associated protein (YAP) mechanotransducer and actin cytoskeleton rearrangement in the iPSC-EBs. Moreover, moderate-stiffness HGSC specifically upregulates the mRNA and protein expression of ectoderm and mesoderm lineage differentiation markers in iPSC-EBs via YAP-mediated mechanotransduction. Pretreatment of mouse iPSC-EBs with moderate-stiffness HGSC promotes cardiomyocyte (CM) differentiation and structural maturation of myofibrils. The proposed HGSC system provides a viable platform for investigating the role of mechanical cues on the pluripotency and differentiation of iPSCs that can be beneficial for research into tissue regeneration and engineering.  相似文献   

4.
Low dielectric constant (low-k) nanocomposite thin films have been prepared by spin coating and thermal cure of solution mixtures of one of two organic low-k thermoset prepolymers and a silica nanoparticle with an average diameter of about 8 nm. The electrical, the mechanical, and the thermomechanical properties of these low-k nanocomposite thin films have been characterized with 4-point probe electrical measurements, nanoindentation measurements with an atomic force microscope, and specular X-ray reflectivity. Addition of the silica nanoparticle to the low-k organic thermosets enhances both the modulus and the hardness and reduces the coefficient of thermal expansion of the resultant nanocomposite thin films. The enhancements in the modulus of the nanocomposite thin films are less than those predicted by the Halpin-Tsai equations, presumably due to the relatively poor interfacial adhesion and/or the aggregation of the hydrophilic silica nanoparticles in the hydrophobic organic thermoset matrices. The addition of the silica nanoparticle to the low-k organic thermoset matrices increases the relative dielectric constant of the resultant nanocomposite thin films. The relative dielectric constant of the nanocomposite thin films has been found to agree fairly well with an additive formula based on the Debye equation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1482–1493, 2007  相似文献   

5.
The tensile dynamic mechanical properties and weight degree of swelling for anionic 2‐hydroxyethyl methacrylate‐co‐acrylic acid hydrogels were observed. Fabrication parameters examined were UV‐photopolymerization exposure time, UV‐photopolymerization intensity, and weight percentage crosslinker. The environmental conditions tested were electrolyte compositions of 0.5 and 0.05 M potassium hydroxide under applied frequencies of 0.1, 1, or 10 Hz. The overall maximum and minimum storage modulus was 1.83 ± 0.18 MPa and 68.5 ± 7.2 kPa, respectively, loss modulus was 432 ± 63 and 7.67 ± 3.22 kPa, respectively, and weight degree of swelling was 14.27 ± 1.27 and 1.95 ± 0.33, respectively. The morphology of fabricated hydrogels was examined using scanning electron microscopy showing a range of porous structures over the fabrication and environmental conditions examined, accounting for the variation in mechanical properties. The properties examined are of interest to researchers fabricating, designing, or modeling active hydrogel‐based microfluidic components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
Electrospinning has been extensively accepted as one of most important techniques for fabrication of scaffolds for bone tissue engineering. Polycaprolactone is one of the most applied electro-spinned scaffolds. Since low mechanical strength of polycaprolactone scaffold leads to the limitation of its applications, composition of polycaprolactone with ceramic particles is of great interest. Several studies have been conducted on fabrication and characterization of polycaprolactone nanocomposite scaffolds, but none of these researches has used mesoporous silica particles (KIT-6). In this project, a high-strength and bioactive nanocomposite scaffold has been developed which consists of polycaprolactone and mesoporous silica particles. Results showed that increase of KIT-6 particles percentages up to 5% leads to the enhancement of tensile strength of scaffold from 1.8 ± 0.2 to 2.9 ± 1.0 MPa. Although wettability of scaffolds in presence of particles was totally lower than pure PCL scaffold, but increase of particles percentages led to enhancement of wettability and water absorption of scaffolds. On the other hand presence of KIT-6 particles increased specific surface area and also bioactivity of scaffold was increased by enhancement of ion exchange between surface and simulated body fluid. Finally it was concluded that PCL-KIT-6 scaffolds are a suitable candidate for application in tissue engineering.  相似文献   

7.
Rod-shaped cellulose nanocrystals (CNCs) were manufactured and used to reinforce polyacrylamide (PAM) hydrogels through in situ free-radical polymerization. The gelation process of the nanocomposite hydrogels was monitored on a rheometer using oscillatory shear. The chemical structure, morphology, swelling property, and compression strength of the formed gels were investigated. A possible mechanism for forming hydrogels was proposed. The results showed that CNCs accelerated the formation of hydrogels and increased the effective crosslink density of hydrogels. Thus CNCs were not only a reinforcing agent for hydrogel, but also acted as a multifunctional cross-linker for gelation. The shear storage modulus, compression strength and elastic modulus of the nanocomposite hydrogels were significantly improved because of good dispersion of CNCs in PAM as well as enhanced interfacial interaction between these two components. Among the CNC contents used, a loading of 6.7 w/w% led to the maximum mechanical properties for nanocomposite hydrogels.  相似文献   

8.
Russian Journal of Physical Chemistry A - A hydrogel nanocomposite composed of reduced graphene oxide (RGO), iron oxide (Fe3O4) nanoparticles, and polyacrylamide (PAM) was prepared using radical...  相似文献   

9.
This study aims at quantifying the nano-size effect in terms of elastic and thermal properties in nano-reinforced polymers. Nano-reinforced PMMA with 4% volume fraction of silica nanoparticles was prepared using particle diameters of 15 nm, 25 nm, 60 nm, 150 nm and 500 nm. Uniaxial tensile tests showed an increase in Young's modulus with decreasing particle diameter when the volume fraction was kept constant. This increase is the signature of the nano-size effect on the macroscopic mechanical properties. Conversely to mechanical properties, the presence of particles in the matrix induced a decrease in glass transition, possibly due to weak interactions between the matrix and silica nanoparticles.  相似文献   

10.
Development of high‐strength hydrogels has recently attracted ever‐increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al3+)‐cross‐linked carboxymethyl hemicellulose (Al‐CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al‐CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross‐linking of Al3+. The nanocomposite hydrogels were characterized by means of FTIR, X‐ray diffraction (XRD), and scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5/PAM/Al‐CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as‐prepared GO/PAM/Al‐CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug‐delivery system applications.  相似文献   

11.
The mechanical properties for silica hydrogel prepared at physiological conditions are reported in this paper. The mechanical testing was performed in the compression mode determining the mechanical characteristics as a function of aging time in TRIS buffer up to 14 days. In addition to a typically used gradient method for Young’s modulus determination from the stress–strain curves, a new phenomenological model was proposed to describe the experimental data. The mechanical properties were stabilized after 2 days of aging, which was concluded from an increase in Young’s modulus between 90 and 400 kPa, an increase in stress at break between 50 and 100 kPa and by a decrease in relative deformation at break from 0.26 to 0.16. The height of samples was constant in the first three days of aging followed by a decrease by ~20%. Dissolving of silica hydrogel characterized through determination of silica content in TRIS buffer employing the molybdenum method was not found to be responsible for this phenomenon. The phenomenological model is proposed to be used for a reliable evaluation of mechanical properties of silica as well as other hydrogels exhibiting low Young’s modulus.  相似文献   

12.
原位分散紫外光固化SiO_2纳米复合材料的性质   总被引:1,自引:0,他引:1  
紫外光固化技术是以紫外光为辐射光源使体系快速固化的技术 ,具有易散热、快速固化成型、百分之百转化率、固化材料质量高等诸多优点 ,可用来制备各种功能材料 [1~ 3] .Adrian等[4] 在紫外光可固化材料中利用分散法填充各种传统填料 ,提高了固化材料的力学性能 .本文将 Si O2 纳米粒子分散在环氧丙烯酸酯齐聚体等构成的紫外光可固化溶液中 ,制得了 Si O2纳米复合材料 .试验表明 :原位分散紫外光固化合成纳米复合材料具有快速固化、容易成型、基体可选等优点 ,所得 Si O2 纳米复合材料具有良好的力学和光学性能 .试剂与仪器 :双酚 A环氧…  相似文献   

13.
A novel polyacrylamide/polyacrylic acid (PAAm/PAA) double network (DN) nanocomposite (NC) hydrogel had been synthesized by two‐step solution polymerization. The PAAm network was crosslinked by inorganic clay while the PAA network was crosslinked by a chemical crosslinker. The chemical structure of the network was confirmed by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The swelling and mechanical strength properties of PAAm/PAA hydrogels were examined. The results showed that a DN hydrogel achieved both a high swelling capacity of 1219 g/g in deionized water and 124 g/g in 0.9 wt% NaCl solution and high compressive stress of 21.5 kPa in a high water content of 99.58%. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

15.
UV‐curing technique was employed in this study to prepare polyester‐acrylate nanocomposite films with silane‐grafted silica nanoparticles. Methacryloxypropyl trimethoxysilane was grafted to the surfaces of silica nanoparticles to improve dispersion of silica nanoparticles as well as interfacial adhesion between the resin matrix and silica nanoparticles. The silane‐grafting was confirmed by nuclear magnetic resonance and infrared spectroscopy. The effects of the silane‐grafting on the mechanical and optical properties as well as UV‐curing behavior of the nanocomposite films were investigated. The tensile strength, transmittance, UV‐curing rate, and final chemical conversion of the nanocomposite films were increased by use of the grafted silica nanoparticles as compared to the use of neat silica nanoparticles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
《Mendeleev Communications》2021,31(5):718-720
This communication describes a new method for immobilizing indium oxide nanoparticles (∼20 nm) on the surface of reduced graphene oxide. Dispersion of graphene oxide with added In2O3 nanoparticles was treated in supercritical isopropanol, both a reducing agent of graphene oxide and a reaction medium. The resulting nanocomposite was characterized by different methods of physical and chemical analysis.  相似文献   

17.
牛血清蛋白在共聚物水凝胶接触镜材料上的沉积过程研究   总被引:1,自引:0,他引:1  
将水凝胶膜样品置于牛血清蛋白(BSA)的水溶液中,沉积一定时间后,采用染料染色结合分光光度法分析沉积前后BSA浓度的变化,计算沉积量,并采用洗脱法测试BSA与水凝胶材料的结合程度.结果表明,BSA的沉积过程为不可逆过程;BSA的沉积作用不受共聚物水凝胶材料中NVP(N-乙烯基吡咯烷酮)结构单元吸附作用的控制;BSA与水凝胶材料松散结合,很容易洗脱;沉积在水凝胶膜表面上的BSA对后续沉积过程无影响.  相似文献   

18.
Bacterial cellulose (BC), which is produced by Gluconacetobacter xylinus (Ga. xylinus) in culture, is made up of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. In the current studies, we used two processes to prepare nanocomposites of BC filled with silica particles. In Process I, Ga. xylinus was incubated in medium containing silica sol Snowtex 0 (ST 0, pH 2–4) or Snowtex 20 (ST 20, pH 9.5–10.0). The elastic modulus at 20 °C was improved by keeping the amount of silica in the nanocomposites below 4% when ST 20 was used and below 8.7% when ST 0 was used. This process allowed incorporation of 50% silica in BC. Inclusion of higher amounts of silica reduced the modulus at 20 °C and the strength of the nanocomposites below that of BC. X-ray diffraction measurements revealed that the silica particles disturb the formation of ribbon-shaped fibrils and affect the preferential orientation of the ( ) plane. We also produced BC-silica nanocomposites by Process II, wherein the BC hydrogel was immersed in different concentrations of silica sols, allowing silica particles to diffuse into the BC hydrogel and lodge in the spaces between the ribbon-shaped fibrils. This method increased the modulus at 20°C and the strength compared to the BC matrix, but it was difficult to load the BC with more than 10% silica in this way.  相似文献   

19.
The composite hydrogel of a nanoscale metal–organic framework (NMOF) and nanoclay has emerged as a new soft-material with advanced properties and applications. Herein, we report a facile synthesis of a hydrogel nanocomposite by charge-assisted self-assembly of Pd@ZIF-8 nanoparticles with Laponite® nanoclay which coat the surface of Pd@ZIF-8 nanoparticles. Such surface coating significantly enhanced the thermal stability of the ZIF-8 compared to the pristine framework. Further, the Pd@ZIF-8+LP hydrogel nanocomposite shows better size-selective catalytic hydrogenation of olefins than Pd@ZIF-8 nanoparticles based on selective diffusion of the substrate.  相似文献   

20.
In this paper, a novel Nafion/SiO2 nanocomposite membrane based on the self-assembled Nafion–SiO2 nanoparticles was developed. The average particle size of Nafion–SiO2 nanoparticles prepared by self-assembly process was 2.8 ± 0.5 nm. The self-assembled Nafion–SiO2 nanoparticles significantly enhance the durability of the Nafion/silica nanocomposite membrane as compared to that of conventional Nafion/silica composite and Nafion 212 membranes under wet/dry cyclic tests at 90 °C. With an addition of 5 wt% self-assembled Nafion–SiO2 nanoparticles, the Nafion/SiO2 nanocomposite membrane shows a significantly improved performance stability at cell/humidifying temperatures of 100 °C/60 °C under a current density of 600 mA/cm2, and the degradation rate is 0.12 mV/min, almost 20 times lower than 2.33 mV/min measured on the pristine Nafion 212 membrane under the same conditions. The present results demonstrate the promises of the self-assembled Nafion/SiO2 nanocomposite membrane for elevated-high temperature PEM fuel cells applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号