首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interpenetrating polymer networks (IPNs) of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) were prepared by simultaneous network formation. The PEO network was produced by acid-catlayzed self-condensation of α,ω-bis(triethoxysilane)-terminated PEO in the presence of small amounts of water. The PMMA network was formed by free radical polymerization of MAA in the presence of divinylbenzene as crosslinker. The reaction conditions were adjusted to obtain similar crosslinking kinetics for both reactions. An attempt was made to construct a phase diagram of the IPNs by measuring the composition of the IPNs at the moment of the appearance of the phase separation, as indicated by the onset of turbidity. This composition could be determined because the siloxane crosslinks of the PEO network could be hydrolyzed in aqueous NaOH with the formation of linear, soluble PEO chains. The phase diagram was compared with phase diagrams of blends of linear polymers and of semi-IPNs (crosslinked PMMA and linear PEO), obtained under similar conditions, i.e. polymerization of MMA in the presence of varying amounts of PEO. It was observed that the form of the phase diagrams of the linear polymers is similar to that of the IPNs, but is quite different from that of the semi-IPNs. Thus, homogeneous transparent materials containing up to 60% of PEO could be prepared in the blends and the IPNs, but in the semi-IPNs, phase separation occurred with PEO contents as low as 10%.  相似文献   

2.
Poly(ethylene oxide) (PEO), soluble in both aqueous and organic solvents, is one of the most intriguing polymers. PEO solution properties have been extensively studied for decades; however, many of the studies have focused on specific properties, such as clustering, of PEO in aqueous solutions, and the behavior of PEO in organic solvents has not been adequately explored. The results presented here demonstrate that PEO crystallizes into a lamellar structure in ethyl alcohol after the mixture is quenched to room temperature from a temperature above the crystal melting point. Above the melting temperature, PEO completely dissolves in ethyl alcohol, and the mixture exhibits regular polymer solution thermodynamic behavior with an upper critical solution temperature (UCST) phase diagram. Remarkably, the UCST phase boundary is significantly below the melting temperature, and this indicates that the system undergoes a crystallization process before the phase separation can occur upon cooling and, therefore, possesses an unusual phase transition. The phase transition from the crystalline state to the miscible solution state is reversible upon heating or cooling and can be induced by the addition of a small amount of water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 557–564, 2006  相似文献   

3.
We hereafter present the study of the high concentration zone of the PEO/Li triflate phase diagram. This system was found to form three different molecular complexes. Their thermal behaviour was elucidated by use of three complementary techniques: Calorimetry, X-ray diffraction and optical microscopy.  相似文献   

4.
The miscibility of blends of phenolphthalein poly(ether ether sulfone) (PES-C) and poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. Differential scanning calorimetry (DSC) studies showed that the PES-C/PEO blends prepared by casting from N,N-dimethylformamide (DMF) possessed a single, composition-dependent glass transition temperature (Tg), and thus that PES-C and PEO are miscible in the amorphous state at all compositions at lower temperature. At higher temperature, the blends underwent phase separation, and the PES-C/PEO blend system was found to display a lower critical solution temperature (LCST) behavior. The phase separation process in the blends has also been investigated by using DSC. Annealed at high temperatures, the PES-C/PEO blends exhibited significant changes of thermal properties, such as the enthalpy of crystallization and fusion, temperatures of crystallization and melting, depending on blend composition when phase separation occurred. These changes reflect different characteristics of phase structure in the blends, and were taken as probes to determine phase boundary. From both the thermal analysis and optical microscopy, the phase diagram of the blend system was established. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1383–1392, 1997  相似文献   

5.
The micellar properties and solubilization capacity of poorly water soluble drugs of several micellar and gel solutions of diblock and triblock copolymers of styrene oxide/ethylene oxide have been measured and compared with block copolymers of butylene oxide/ethylene oxide, showing that the solubilization capacity of the styrene oxide block is approximately four times that of a butylenes oxide block for dilute solutions. To continue establishing the correlation between micellar characteristics and solubilization capacity, we have found it interesting to compare the micellar and gelation properties of the diblock and triblock copolymers PSO10PEO135 and PEO69PSO8PEO69 (subindexes are the number-average block lengths), with different architecture but similar average block lengths. Surface tension measurements allowed the determination of the critical micelle concentrations at several temperatures and, so, to calculate standard enthalpies of micellization. Static and dynamic light scattering data permitted us to determine micellar parameters and to obtain qualitatively the extent of hydration of the copolymer micelle. A tube inversion method was used to define the mobile-immobile (soft-hard gel) phase boundary. To refine the phase diagram and observe the existence of additional phases, rheological measurements were done. The results are in good agreement with previous values published for PSOnPEOm and PEOmPSOnPEOm copolymers.  相似文献   

6.
The influence of added colloidal particles on the phase separation of mixed aqueous polymer solutions is investigated. Two types of particles (polystyrene latex or silica) and different combinations of segregating polymers (dextran of varying molar mass combined with poly(ethylene oxide) (PEO) of varying molar mass, or Ucon, a copolymer of ethylene oxide and propylene oxide) were used. All systems displayed particle-induced instability effects, but the extent of the effect varied strongly between the various combinations and with the amount of added salt. Very large instability effects were seen in certain mixtures. Two mechanisms, both relying on the adsorption of at least one of the polymers to the particle surface, seem to operate. Close to the cloud-point curve of the particle-free polymer1/polymer2/water mixture, adsorption of PEO or Ucon to the particles gives rise to a capillary-induced phase separation. Close to the dextran/water axis of the phase diagram, the adsorbing polymer gives rise to a surface modification of the particles, which then interacts repulsively with the surrounding dextran solution.  相似文献   

7.
A versatile approach to control the localization of cellulose nanocrystal (CNC) in PLA/PA11 blends is presented. A PEO/CNC mixture with a high level of CNC dispersion is prepared through a combination of high pressure homogenization and freeze‐drying. The prepared PEO/CNC mixture is then incorporated into the PLA/PA11 blends using two different strategies. Typically for CNC/PLA/PA11, the CNCs selectively localize in PA11. However, PEO‐coated CNC particles segregate into PLA irrespective of whether the PEO/CNC mixture is premixed with PLA or PA11. It is suggested that a strong interaction between PEO and CNC particles combined with the PLA/PEO miscibility facilitates the localization of PEO‐coated CNC in the PLA. The localization of PEO‐coated CNC in the PLA has no effect on the morphology of the PLA‐5PEO/PA11 with matrix/dispersed phase form. However, 2 wt % PEO‐coated CNC in the co‐continuous (PLA‐5PEO)/PA11 50/50 vol % blend diminishes the phase thickness from 11 ± 1 to 4 ± 1.5 μm. This is attributed to a retarded relaxation of the PLA phase. This work outlines a strategy to control the CNC localization into a given polymeric phase in a binary polymer–polymer mixture. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 576–587  相似文献   

8.
A new solid polymer electrolyte PEO20-LiTf-Urea1.5 was prepared by solution casting technique. The energy of frontier orbitals for the components of the electrolyte was predicted by quantum chemistry calculations, and TG stability and electrochemical features were measured. Urea exhibited a lower HOMO energy than PEO, implying its enhanced stability against electrochemical oxidation. Experimentally addition of urea increases the ionic conductivity, which guarantees conductivity requirement for lithium ion b...  相似文献   

9.
采用聚氧化乙烯(PEO)、丁二腈和高氯酸锂(LiClO4)的复合电解质体系, 制备了一系列不同配比的PEO/SN/LiClO4复合电解质, 对其室温电性能和相态结构进行了表征, 并探讨了相态结构对室温电导率的影响.  相似文献   

10.
The fabrication of shape memory polymers with both interconnected nanopores and high mechanical strength is challenging. In this work, porous shape memory polymers (PSMPs) were prepared based on the combination of crystallization and phase separation in a ternary blend of poly(l ‐lactic acid)/polyvinyl acetate/poly(ethylene oxide) (i.e., PLLA/PVAc/PEO). The phase separation between the PLLA and PVAc/PEO resulted in bicontinuous structures in microscale including a PLLA‐rich phase and a mixed PVAc/PEO phase. On one hand, the continuous PLLA‐rich phase contributed to the high mechanical strength and shape memory performance, in which tiny crystals and amorphous matrix of PLLA act as the shape fixed phase and reversible phase, respectively. On the other hand, the crystallization of PEO in the miscible PVAc/PEO blend produced submicrometer bicontinuous structures. The interconnected nanopores have been obtained by selective etching of the PEO. Our strategy opens a new avenue for fabricating PSMPs with both interpenetrated channels and high strength. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 125–130  相似文献   

11.
The phase behavior of poly (ethylene oxide) (PEO) and poly(styrene-co-sodium sulfonated styrene) (SPS) blends has been examined as a function of copolymer composition. The mixtures show complex coacervation in dilute benzene/methanol (9/1, v/v) solution. The presence of intermolecular interactions between PEO and SPS in solution is verified by viscometry. Interaction between PEO and SPS in the solid state was supported by small-angle x-ray scattering; however, binary blends containing low PEO content show high miscibility, whereas the blends with high PEO content show phase separation.  相似文献   

12.
A series of poly(ethylene oxide) (PEO) blends with cellulose (CEL) or cellulose derivatives—carboxymethyl cellulose (CMC), cellulose acetate (CAC), and cellulose ether (CET)—has been investigated as phase change materials for thermal energy storage. For PEO/CEL blends solid–solid phase transition has been observed in the whole concentration's range; for PEO/CMC and PEO/CET blends solid–solid phase transition has been found for PEO content 25 or 50 and 25 wt%, respectively. Otherwise, solid–liquid phase transition takes place. MTDSC investigations revealed that for PEO/CEL and PEO/CMC blends transition the strongest recrystallization effect (as evidenced by exothermic effect in reversing heat flow) as melting process occurred. FTIR analysis shows a shift of the stretching vibration bands of both the proton‐donor O? H groups from CEL and PEO due to intermolecular hydrogen interactions between the blends' components. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
By means of differential scanning calorimetry, the phase diagram of the poly(ethylene oxide)–p-bromotoluene system (PEO–PBT) is established. It is found that PEO and PBT form a molecular intercalate with a molar stoichiometry of 22%, which corresponds to two PBT molecules for seven ethylene oxide units. The intercalate undergoes an incongruent melting at 48.5 °C on heating. Wide-angle X-ray diffraction experiments indicate that the PEO–PBT intercalate has a crystalline structure different from pure PEO. From variable-temperature Fourier transform IR spectroscopy investigations, it is believed that the macromolecular chains in the PEO–PBT intercalate adopt a 7/2 helical conformation which is identical to that in the pure PEO. There are a considerably large number of helical structures in the melt of the PEO–PBT intercalate at temperatures ranging from 50 to 60 °C even though the crystalline lattices collapsed in the aforementioned temperature range. Such a kind of melt is in a conformationally high order state. Received: 5 March 2001 Accepted: 31 August 2001  相似文献   

14.
Solid polymer electrolyte blends were prepared with POSS-PEO(n=4)8 (3K), poly(ethylene oxide) (PEO(600K)), and LiClO4 at different salt concentrations (O/Li = 8/1, 12/1, and 16/1). POSS-PEO(n=4)8/LiClO4 is amorphous at all O/Li investigated, whereas PEO(600K) is amorphous only for O/Li = 8/1 and semicrystalline for O/Li = 12/1 and 16/1. The tendency of PEO(600K) to crystallize limited the amount of POSS-PEO(n=4)(8) that could be incorporated into the blends, so that the greatest incorporation of POSS-PEO(n=4)(8) occurred for O/Li = 8/1. Blends of POSS-PEO(n=4)(8)/PEO(600K)/LiClO4 (O/Li = 8/1 and 12/1) microphase separated into two amorphous phases, a low T(g) phase of composition 85% POSS-PEO(n=4)(8)/15% PEO(600K) and a high T(g) phase of composition 29% POSS-PEO(n=4)(8)/71% PEO(600K). For O/Li = 16/1, the blends contained crystalline (pure PEO(600K)), and two amorphous phases, one rich in POSS-PEO(n=4)(8) and one rich in PEO(600K). Microphase, rather than macrophase separation was believed to occur as a result of Li(+)/ether oxygen cross-link sites. The conductivity of the blends depended on their composition. As expected, crystallinity decreased the conductivity of the blends. For the amorphous blends, when the low T(g) (80/20) phase was the continuous phase, the conductivity was intermediate between that of pure PEO(600K) and POSS-PEO(n=4)(8). When the high T(g) (70/30, 50/50, 30/70, and 20/80) phase was the continuous phase, the conductivity of the blend and PEO(600K) were identical, and lower than that for the POSS-PEO(n=4)(8) over the whole temperature range (10-90 degrees C). This suggests that the motions of the POSS-PEO(n=4)(8) were slowed down by the dynamics of the long chain PEO(600K) and that the minor, low Tg phase was not interconnected and thus did not contribute to enhanced conductivity. At temperatures above T(m) of PEO(600K), addition of the POSS-PEO(n=4)(8) did not result in conductivity improvement. The highest RT conductivity, 8 x 10(-6) S/cm, was obtained for a 60% POSS-PEO(n=4)(8)/40% PEO(600K)/LiClO4 (O/Li = 12/1) blend.  相似文献   

15.
Abstract

The binary phase diagram of a triblock copolymer poly(oxyethylene) (PEO) poly(oxypropylene) (PPO) poly(oxyethylene) (PEO), (PEO)37(PPO)58(PEO)37 or P105 in water and the ternary system of P105, water, and pentaoxyethylene dodecyl ether (C12EO5) has been studied to understand the miscibility of a small amphiphile, C12EO5 and a copolymer, as well as the mixing effect on the formed liquid crystalline structures. Phase diagrams, small angle x‐ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize these systems. The phase diagram of the binary system is presented together with the characteristic parameters for founded phases, namely, cubic, hexagonal, and lamellar phases. In the ternary system it was found that the small amphiphile and the block copolymer, despite having very different chain lengths are essentially miscible forming single phases. A large amount of C12EO5 can be solubilized in the P105 aggregates whereas P105 is most difficult to dissolve in the C12EO5 aggregates because of the difference in the molecular size. The copolymer is practically insoluble in the lamellar phase of C12EO5 due to the packing constraint. Hence, two lamellar phases coexist in a surfactant‐rich region, at W s  = 0.66, where W s is the weight fraction of the total amphiphile in the system. This indicates that the thickness of the lipophilic part of the C12EO5 lamellar phase is too small to allocate the large lipophilic chain of the P105 triblock copolymer.  相似文献   

16.
It has been reported that cellulose is better dissolved in NaOH-water when a certain amount of urea is added. In order to understand the mechanisms of this dissolution and the interactions between the components, the binary phase diagram of urea/water, the ternary urea/NaOH/water phase diagram and the influence of the addition of microcrystalline cellulose in urea/NaOH/water solutions were studied by DSC. Urea/water solutions have a simple eutectic behaviour with a eutectic compound formed by pure urea and ice (one urea per eight water moles), melting at −12.5 °C. In the urea/NaOH/water solutions, urea and NaOH do not interact, each forming their own eutectic mixtures, (NaOH + 5H2O, 4H2O) and (urea, 8H2O), as found in their binary mixtures. When the amount of water is too low to form the two eutectic mixtures, NaOH is attracting water at the expense of urea. In the presence of microcrystalline cellulose, the interactions between cellulose and NaOH/water are exactly the same as without urea, and urea is not interacting with cellulose. A tentative explanation of the role of urea is to bind water, making cellulose-NaOH links more stable. Member of the European Polysaccharide Network of Excellence (EPNOE),  相似文献   

17.
Mixtures containing water and a PEO–PPO–PEO block copolymer, i.e. apolyoxyethylene–polyoxypropylene–polyoxyethylene glycol, have been investigated and the phase boundaries determined. The phase diagram shows similarities with non-ionic surfactant systems of the n-alkyl-polyoxyethylene glycol family, with occurrence of different lyotropic liquid crystalline phases and of upper consolute boundaries. Added sodium salts have a pronounced effect on the critical solution boundaries, which can be shifted upwards (downwards), depending on the counterion. A qualitative explanation of the above effects is given in terms of adsorption and/or depletion of the electrolytes at the polar-apolar interface of the aggregates formed by block copolymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
By means of the electrospinning technique we have successfully synthesized cyclodextrin (CD) functionalized polyethylene oxide (PEO) nanofibers (PEO/CD) with the ultimate goal to develop functional nanowebs. Three different types of CDs; α-CD, β-CD and γ-CD are incorporated individually in electrospun PEO nanofibers. The aqueous solutions containing different amount of PEO (3%, 3.5% and 4% (w/v), with respect to solvent) and CDs (25% and 50% (w/w), with respect to PEO) are electrospun and bead-free nanofibers are obtained. The presence of the CDs in the PEO solutions is found to facilitate the electrospinning of bead-free nanofibers from the lower polymer concentrations and this behavior is attributed to the high conductivity and viscosity of the PEO/CD solutions. The presence of CDs in the electrospun PEO nanofibers is confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The 2-D X-ray diffraction (XRD) spectra of PEO/CD nanowebs did not show any significant diffraction peaks for CDs indicating that the CD molecules are distributed within the polymer matrix without any phase separated crystalline aggregates.  相似文献   

19.
以六氟异丙醇(HFIP)为聚甲醛(POM)与聚氧化乙烯(PEO)的共溶剂,通过溶液结晶研究了PEO分子量对POM/PEO 50/50晶/晶共混物结晶行为及结晶形态的影响。结果表明,PEO分子量越小,POM与PEO在结晶过程中相互干扰越大。当PEO分子量为4×103时,共混物中POM形成部分不完善晶体,出现明显的熔融双峰。SEM结果表明:含不同分子量PEO的共混晶体均无明显相分离,且低分子量PEO的共混物更易形成规整球晶,认为通过溶液结晶,POM/PEO 50/50共混物中POM与PEO形成了晶体相互穿插的结晶结构。  相似文献   

20.
Poly(ethylene oxide/polylactide/poly(ethylene oxide) (PEO/PL/PEO) triblock copolymers, in which each block is connected by an ester bond, were synthesized by a coupling reaction between PL and PEO. Hydroxyl‐terminated PLs with various molecular weights were synthesized and used as hard segments. Hydroxyl‐terminated PEOs were converted to the corresponding acid halides via their acid group and used as a soft segment. Triblock copolymers were identified by Fourier transform infrared spectroscopy, 1H NMR, and gel permeation chromatography. Differential scanning calorimetry (DSC) and X‐ray diffractometry of PEO/PL/PEO triblock copolymers suggested that PL and PEO blocks were phase‐separated and that the crystallization behavior of the PL block was markedly affected by the presence of the PEO block. PEO/PL/PEO triblock copolymers with PEO 0.75k had two exothermic peaks (by DSC), and both peaks were related to the crystallization of PL. According to thermogravimetric analysis, PEO/PL/PEO triblock copolymer showed a higher thermal stability than PL or PEO. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2545–2555, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号