首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 912 毫秒
1.
Methyl acrylate polymer colloids can be hydrolyzed self-catalytically by bound strong acid surface groups derived from the polymerization initiator. The kinetics of hydrolysis were earlier shown to be apparently pseudo-zeroth-order for any given latex, and first order with respect to surface strong acid concentration. A surface reaction zone model was proposed to explain the kinetics. This model leads to the prediction that the polymer particles will possess a core-shell morphology after some hydrolysis has occurred. This study employs 13C NMR spectroscopy to investigate the particle morphology in the wet latex, a new application for this method. The temperature dependence of the 13C NMR integrated intensities at various levels of hydrolysis provides strong evidence that the particles do possess core-shell morphology, and that the shell is composed of PAA/PMA copolymer. This shell is swollen and plasticized by water, resulting in greatly enhanced segmental mobility of the polymer chains as evidenced by marked narrowing of the NMR lines. Thermal measurements alone cannot distinguish particle morphology because PMA appears to be somewhat compatible with its partially hydrolyzed analog at the temperatures of measurement.  相似文献   

2.
The cationic polymerization of electron rich monomers such as vinyl ethers, vinyl furane, and cyclopentadiene on silica surfaces can be initiated by aryl methyl halides. The reactions yield always soluble polymers (by heterogeneous catalysis) and novel polymer/silica hybrid materials. The link between polymer and solid is caused by covalent Si-O-C bonds, by network formation of the polymers during the chain growth, or by a combination of both of them. The analysis of the polymer structures on the surface by 1H MAS NMR spectroscopy in suspension and by solid state 13C CP MAS NMR spectroscopy is described. Proof of Si-O-C bonds via DRIFT spectroscopy and 13C CP MAS NMR spectroscopy is given. The most effective method of irreversibly linking the polymer to the silica surface is the network formation. Polyvinyl ethers are bound strongly to the surface, as can be shown by FTIR measurements, but the linkage is not stable due to the Si-O-C bonds' susceptibility to hydrolysis. Poly-cyclopentadienes (PCPD) are linked to the surface by Si-O-C bonds, which show an extraordinary high resistance to acids and bases. Si-O-C bond formation of poly-2-vinyl furane could not yet be detected by 13C CP MAS NMR spectroscopy and DRIFT spectroscopy. In this case the high degree of coating derives from the bifunctionality of 2-vinyl furane: it may undergo Friedel-Crafts-alkylation at the 5-position of the furane ring as well as chain polymerization via the vinyl group at the 2-position.  相似文献   

3.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

4.
Summary: The surface coverage of amorphous silica gels used in the synthesis of silica polyamine composites has been investigated by 29Si NMR. By diluting the polyamine anchor silane, chloropropyl trichlorosilane, with methyl trichlorosilane it was found that surface coverage could be markedly improved for a range of amine polymers after grafting to the silica surface. The commensurate decrease in the number of anchor points and increase in the number of free amines results in an increase in metal capacity and/or an improvement in capture kinetics. Solid state CPMAS-13C NMR has been employed to investigate the structure and metal ion binding of a series of these composite materials. It is reported that the highly branched polymer, poly(ethyleneimine) (PEI) exhibits much broader 13C NMR resonances than the linear polymers poly(allylamine) (PAA) and poly(vinylamine) (PVA). These results are understood in terms of the low energy conformations calculated from molecular modeling studies. Three new applications of the technology are also presented: 1) separation of lanthanides as a group from ferric ion and all other divalent ions; 2) a multi step process for recovering and concentrating the valuable metals in acid mine drainage; 3) a process for removing low level arsenic and selenium in the presence of sulfate using immobilized cations on the composite materials.  相似文献   

5.
Hydrated powders of non-gelatinised starch and hydrogels of gelatinised starch alone or with addition of modified nanosilica (with grafted aminopropylmethylsilyl groups substituting one-third of surface silanols) were studied using broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarisation current (TSDC) method and 1H NMR spectroscopy with layer-by-layer freezing-out of bulk and interfacial waters. The 1H NMR and TSDC techniques with the use of Gibbs–Thomson relation for the freezing point depression allow us to calculate: (i) the thermodynamic parameters of interfacial water weakly and strongly bound to polymer molecules and nanoparticles; (ii) size distributions of pores filled by structured water; (iii) surface area and volume of micro-, meso- and macropores. The DRS and TSDC results for hydrogels and hydrated powders with starch/modified fumed silica show that the β- and γ-relaxations of starch are strongly affected by water and functionalised silica nanoparticles which slow down both low- and high-frequency and low- and high-temperature relaxations.  相似文献   

6.
Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson’s‐type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4‐diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface‐initiated photoinferter‐mediated polymerization (SI‐PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl3 ? x H2O as a precursor. The triphenylphosphine units and rhodium as RhI provide an environment to form Wilkinson’s catalyst‐like structures. Employing multinuclear (31P, 29Si, and 13C) solid‐state NMR spectroscopy (SSNMR), the structure of the catalyst bound to the polymer and the intermediates of the grafting reaction have been characterized. Finally, first applications of this catalyst in hydrogenation reactions employing para‐enriched hydrogen gas (PHIP experiments) and an assessment of its leaching properties are presented.  相似文献   

7.
This study is focused on the formation of polymer/silica nanocomposite particles prepared by the surfactant-free aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) in the presence of 19 nm glycerol-functionalized aqueous silica nanoparticles using a cationic azo initiator at 60 °C. The TFEMA polymerization kinetics are monitored using 1H NMR spectroscopy, while postmortem TEM analysis confirms that the final nanocomposite particles possess a well-defined core–shell morphology. Time-resolved small-angle X-ray scattering (SAXS) is used in conjunction with a stirrable reaction cell to monitor the evolution of the nanocomposite particle diameter, mean silica shell thickness, mean number of silica nanoparticles within the shell, silica aggregation efficiency and packing density during the TFEMA polymerization. Nucleation occurs after 10–15 min and the nascent particles quickly become swollen with TFEMA monomer, which leads to a relatively fast rate of polymerization. Additional surface area is created as these initial particles grow and anionic silica nanoparticles adsorb at the particle surface to maintain a relatively high surface coverage and hence ensure colloidal stability. At high TFEMA conversion, a contiguous silica shell is formed and essentially no further adsorption of silica nanoparticles occurs. A population balance model is introduced into the SAXS model to account for the gradual incorporation of the silica nanoparticles within the nanocomposite particles. The final PTFEMA/silica nanocomposite particles are obtained at 96% TFEMA conversion after 140 min, have a volume-average diameter of 216 ± 9 nm and contain approximately 274 silica nanoparticles within their outer shells; a silica aggregation efficiency of 75% can be achieved for such formulations.

SAXS is used to study the formation of polymer/silica nanocomposite particles prepared by surfactant-free aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate in the presence of silica nanoparticles using a azo initiator at 60 °C.  相似文献   

8.

Nanocomposite latex particles, with a silica nanoparticle as core and crosslinked poly(tert‐butylmethacrylate) as shell, were prepared in this work. Silica nanoparticles were first synthesized by a sol‐gel process, and then modified by 3‐(trimethoxysilyl)propyl methacrylate (MPS) to graft C?C groups on their surfaces. The MPS‐modified silica nanoparticles were characterized by elemental analysis, FTIR, and 29Si NMR and 13C‐NMR spectroscopy; the results showed that the C?C groups were successfully grafted on the surface of the silica nanoparticles and the grafted substance was mostly the oligomer formed by the hydrolysis and condensation reaction of MPS. Silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were prepared via seed emulsion polymerization using the MPS‐modified silica nanoparticle as seed, tert‐butylmethacrylate as monomer and ethyleneglycol dimethacrylate as crosslinker. Their core/shell nanocomposite structure and chemical composition were characterized by means of TEM and FTIR, respectively, and the results indicated that silica/poly(tert‐butylmethacrylate) core/shell nanocomposite latex particles were obtained.  相似文献   

9.
29Si magic angle spinning NMR, and i.r. spectroscopy have been used to study the adsorption of KCN, KOCN and KSCN onto silica gel. KCN and KOCN chemisorb, forming Si-OCN groups at the silica surface, whereas KSCN is physisorbed. KCN-silica and KOCN-silica show a peak at −99 ppm in the 29Si NMR spectrum, and a broad band at 2300 cm−1 in the i.r. spectrum; these features are absent in the spectra of KSCN-silica.  相似文献   

10.
We report in our studies to assess the impact of gamma radiation on silica and on the silica-polymer interface in filled polysiloxane rubber. Electron spin resonance (ESR) and solid-state nuclear magnetic resonance (NMR) studies have been performed on samples exposed to gamma radiation. In an effort to probe directly the effect of gamma radiation on the silica surface, we employed 1H and 29Si NMR. Our ESR studies show trapped paramagnetic species (positive holes and/or trapped electrons) within the host silica matrix for all samples exposed to gamma radiation. A sample of pure cab-o-sil irradiated to a dose of 50 kGy also shows an ESR signal. Our studies on real-time aged samples (derived from field trials) also show ESR signatures indicative of silica based trapped paramagnetic species. The growth of trapped paramagnetic species as a function of gamma dose was investigated. This shows that the build up of trapped species occurs rapidly at low gamma dose before reaching saturation at about 20-30 kGy. Radiation induced band gap excitation is the likely process leading to the creation of these paramagnetic species which may be trapped in regions of local charge deficit within the silica matrix. Species that are not trapped may take part in silica surface reactions leading to changes in filler-polymer interfacial interactions. NMR studies combined with ammonia modified swell studies have shown increased polymer segmental chain mobility (softening) at low gamma dose indicative of a possible reduction in filler-polymer interfacial interactions. For those samples exposed to high gamma dose, our ammonia modified swell studies suggest increased polymer-filler interactions presumably through silica-polymer crosslinking effects. Our 1H and 29Si NMR studies on irradiated silica suggest that the silica surface is sensitive to gamma radiation. Our observations are important as they highlight the need to better control the quality (size, purity, etc.) of the silica constituent in filled polymer components used in gamma radiation environments.  相似文献   

11.
29Si and 13C CP-MAS NMR spectroscopy was used to follow the conversion of native silica to a p-chlorobenzamide bonded silica material. The benzamide bonded phase was prepared via a hydrosilation reaction of a hydride silica intermediate with p-chloro-N-allylbenzamide. Solid-state NMR was used to show the disappearance of reactive surface hydride species (MH) and to identify newly formed bonded chemical species on the silica surface. DRIFT spectroscopy, elemental analysis, and specific surface-area determinations (BET) of the prepared phases are also reported.  相似文献   

12.
Summary Aminopropyl chemically bonded phases for high performance liquid chromatography (HPLC) have been prepared using mono- and trifunctional methoxyor ethoxysilanes. Three types of silica gel with different surface characteristics were used as support for the chemically bonded phases (CBPs). Surface characteristics of the packings before and after chemical modification were determined by porosity parameters, elemental analysis and CP/MAS NMR spectroscopy.29Si and13C CP/MAS NMR investigations gave informations about different interactions between aminosilyl ligands and/or these ligands and/or water molecules condensed in the pores of the silica gel surface. With decreasing pore diameter of the silica gel the proportion of protonated aminopropyl ligand increases.  相似文献   

13.
The hydration of synthetic poly(P-hydroxy 1,3 propylenephosphate) in hydrogen and mixed H+-Mg+2 forms has been studied by means of the pulsed NMR method. This polymer may be regarded as a simplified model of natural teichoic acids appearing in a cell wall of gram-positive bacteria. The investigations of nuclear magnetic relaxation of water protons in polymer gels prove the existence of two phases of water. One is water strongly bound to phosphate groups which does not freeze at low temperature and the other is weakly bound water freezing at 243–253 K. The distribution of correlation times has been stated for water in the first hydration shell of phosphate groups. For both acid and magnesium salt forms the hydration shell is composed of three water molecules.  相似文献   

14.
A major issue in the study of biosilicification processes is the harsh chemical conditions required for silica dissolution, which often lead to denaturation of the associated bio-organic matter. In order to demonstrate the potential of solid state NMR for investigating silicified materials of natural origin, this technique was applied to isotopically enriched Thalassiosira pseudonana diatom cells. 29Si, 1H,31P, 13C and 15N solid state NMR studies were performed on whole cells, SDS-extracted and H2O2-cleaned silica shells. Cross-polarization techniques were useful for identifying the presence of mobile and rigid molecules, allowing loosely bound and silica-entrapped species to be discriminated. Successive cleaning procedures efficiently eliminated weakly associated organic matter. The H2O2-cleaned silica shell still contained carbohydrates (mainly chitin) and proteins as well as lipids. This suggests that the role of lipids in diatom shell formation may have been underestimated so far, demonstrating the potential of solid state NMR for studying composite biomaterials. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.  相似文献   

16.
This article reports the synthesis of atom transfer radical polymerization (ATRP) of active initiators from well‐defined silica nanoparticles and the use of these ATRP initiators in the grafting of poly(n‐butyl acrylate) from the silica particle surface. ATRP does not require difficult synthetic conditions, and the process can be carried out in standard solvents in which the nanoparticles are suspended. This “grafting from” method ensures the covalent binding of all polymer chains to the nanoparticles because polymerization is initiated from moieties previously bound to the surface. Model reactions were first carried out to account for possible polymerization in diluted conditions as it was required to ensure the suspension stability. The use of n‐butyl acrylate as the monomer permits one to obtain nanocomposites with a hard core and a soft shell where film formation is facilitated. Characterization of the polymer‐grafted silica was done from NMR and Fourier transform infrared spectroscopies, dynamic light scattering, and DSC. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4294–4301, 2001  相似文献   

17.
Herein, we report on the synthesis of film-forming poly(styrene-co-butyl acrylate-co-acrylic acid)/SiO2 [P(St-BA-AA)/SiO2] nanocomposites by in situ formation of SiO2 nanoparticles from TEOS via sol–gel process in the presence of poly(acrylic acid) (PAA)-functionalized poly(styrene-co-butyl acrylate) [P(St-BA)] particles fabricated by soap-free emulsion polymerization. The formed silica particles could be absorbed by polyacrylate chains on the surface of PAA-functionalized P(St-BA) particles; thus, raspberry-like polymer/silica nanocomposites would be obtained. Transmission electron microscopy, Fourier transform infrared spectroscopy, attenuated total reflectance infrared spectrum, ultraviolet–visible transmittance spectra, and thermogravimetric analysis were used to characterize the resulting composites. The results showed that the hybrid polymer/silica had a raspberry-like structure with silica nanoparticles anchored on the surface of polymer microspheres. The thermal, fire retardant, and mechanical properties and water resistance of the film were improved by incorporating silica nanoparticles, while the optical transmittance was seldom affected due to nanosized silica particles uniformly dispersed in the film.
Figure
Film-forming polymer/silica nanocomposites with raspberry-like morphology have been successfully prepared via soap-free emulsion polymerization followed by the sol–gel process. The number and the size of SiO2 particles coated on the surface of polymer particles can be adjusted by the amounts of TEOS and ammonia. After the film formation of polymer/silica nanocomposites, silica nanoparticles are homogeneously dispersed within the film without aggregation.  相似文献   

18.
The reactivity of copolymer silane composed of maleic anhydride in the modification of fine colloidal silica was studied. The reaction of colloidal silica of 10 and 45-nm diameter with trimethoxysilyl-terminated poly(maleic anhydride-co-styrene) [P(MA-ST)] and poly(MA-co-methyl methacrylate) in tetrahydrofuran resulted in effective surface modification without particle aggregation. From the results that the reaction using the polystyrene silane of low molecular weight led to partial aggregation, it was suggested that the steric interaction between relatively rigid copolymer chains having a maleic anhydride moiety adsorbed on the silica prevented the aggregation in the reaction. The 29Si cross-polarization magic-angle-spinning NMR spectra of P(MA-ST)-modified silica showed that the polymer silane was bound to the silica surface by the direct reaction with silica hydroxyl groups and via the polymerization. Received: 27 June 2001 Accepted: 6 September 2001  相似文献   

19.
Porous hybrid materials have been fabricated by sol-gel processing of tetraethoxysilane (TEOS) and 1,3,5,7-tetramethyl-tetrakis(ethyltriethoxysilane)-cyclotetrasiloxane (1) in the presence of the cationic surfactant, cetyltrimethylammonium bromide (CTAB). The chemical and physical properties of these materials have been analysed by FT-IR spectroscopy, solid state 29Si NMR spectroscopy, powder X-ray diffraction and nitrogen adsorption-desorption studies. FT-IR spectroscopy established that the CTAB surfactant can be extracted from a crushed gel using ethanol as a solvent. Solid state 29Si NMR spectroscopy showed the presence of D, T and Q species as expected from the structure of the precursors. Broad bands observed for the D units at –18 ppm and the T units at –63 ppm suggested that the cyclotetrasiloxane was held in a rigid environment and bound to the Q species of the silica matrix derived from the TEOS. NMR spectroscopy confirmed that solvent extraction resulted in further condensation of the silica matrix. Powder X-ray diffraction indicated that the materials possess short-range order and small domain sizes, as shown by broad diffraction peaks. The condensation induced by solvent extraction led to a decrease in the lattice and domain size of the samples, generally resulting in a less ordered material. Nitrogen adsorption-desorption isotherms were typical of microporous materials with pore diameters of 18 Å and a narrow size distribution.  相似文献   

20.
The microcapsules with interpenetrating polymer network (IPN) structure based on crosslinked poly (N-isopropylacrylamide) (PNIPAM) and crosslinked poly (acrylic acid) (PAA) were fabricated in a three-step process. Firstly, silica/PNIPAM core/shell composite particles were synthesized by thermo-initiated seed precipitation polymerization using 3-(trimethoxysilyl)propyl methacrylate modified silica colloidal particles as seeds and N-isopropylacrylamide and N,N′-methylenebisacrylamide (MBA) as monomer and crosslinker, respectively. Secondly, PAA network was incorporated into the shell of the composite particles by redox-initiated polymerization of acrylic acid and MBA entrapped in the PNIPAM network. Finally, the silica core of the composite particles was removed using hydrofluoric acid under certain condition to produce the microcapsules. The chemical compositions, their mass ratio, and particle sizes of the particles formed in each step were determined by Fourier transformation infrared spectroscopy, thermogravimetry, and dynamic laser light scattering (DLLS), respectively. The IPN structure of the microcapsules was identified by transmission electron microscopy (TEM) using uranyl acetate staining method, and their hollow structure was evidenced by TEM and scanning electron microscopy. Their temperature- or pH-dependent hydrodynamic diameters were measured by DLLS, and the results showed that the microcapules had both pH- and temperature-responsive properties, and the temperature-responsive component and the pH-responsive component inside the microcapsule shell had little interference with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号