首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
The distribution of substituents of cellulose xanthogenate and carboxymethyl cellulose along the cellulose chains and therefore in relation to the molecular mass can be measured using size exclusion chromatography including a multi angle laser light scattering and mass detection for determining the molecular mass of the derivative assisted by an UV- detection for determining the xanthate groups and carboxymethyl groups after derivatisation, respectively. The results investigating cellulose xanthogenate show that the temperature used in dissolving xanthogenate and in ripening viscose influences the distribution of xanthate groups in a different way; but all steps processing viscose are connected with a loss in the degree of substitution in ripening the distribution of substitution additionally becomes more even. The investigated carboxymethyl cellulose revealed different distribution of carboxylic groups in dependence on the viscosity of the CMC.  相似文献   

2.
Summary : Pulp reactivity is a kinetic term and is always connected with a certain derivatization process. The quality and hence the market value of the pulp is determined by such characteristics as α- cellulose content, solubility, brightness, ash content, as well as the amount of soluble material in dichloromethane. However, solubility data, especially S18 and S10 values do not characterise dissolving pulp reactivity. These are indicative of pulp solubility and provide some information regarding losses of material during pulp processing. One way by which the pulp reactivity for viscose making can be characterised is the investigation of the mercerisation step. Following the mercerisation kinetics by help of the molecular weight distribution of cellulose II the behaviour especially of the high molecular weight cellulose gives information regarding the accessibility and therefore, about the reactivity of the pulp aside from losses in low molecular weight cellulose. This behaviour will be shown on different pulps and the physicochemical background will be discussed in relation to results obtained from wide angle X-ray scattering and Raman investigations. The influence of the behaviour of the pulp during mercerising on the viscose process, and the molecular weight distribution of the viscose including the distribution of the xanthogenate groups along the chain was investigated and will also be discussed.  相似文献   

3.
In this study, the concept of multifunctional alkaline pulping has been approved to produce high-purity and high-yield dissolving pulps. The selective removal of hemicelluloses was achieved by either water autohydrolysis (PH) or alkaline extraction (E) both applied as pre-treatments prior to cooking. Alternatively, hemicelluloses were isolated after oxygen delignification in a process step denoted as cold caustic extraction (CCE). Eucalyptus globulus wood chips were used as the raw material for kraft and soda-AQ pulping. In all process modifications sulfur was successfully replaced by anthraquinone. By these modifications purified dissolving pulps were subjected to TCF bleaching and comprehensive viscose and lyocell application tests. All pulps met the specifications for dissolving pulps. Further more, CCE-pulps showed a significantly higher yield after final bleaching. Morphological changes such as ultrastructure of the preserved outer cell wall layers, specific surface area and lateral fibril aggregate dimension correlated with the reduced reactivity towards regular viscose processing. The residual xylan after alkali purification depicted a lower content of functional groups and a higher molecular weight and was obviously entrapped in the cellulose fibril aggregates which render the hemicelluloses more resistant to steeping in the standard viscose process. Simultaneously, the supramolecular structure of the cellulose is partly converted from cellulose I to cellulose II by the alkaline purification step which did not influence the pulps reactivity significantly. Nevertheless, these differences in pulp parameters did not affect the lyocell process due to the outstanding solubility of the pulps in NMMO. Laboratory spinning revealed good fiber strength for both, regular viscose and lyocell fibers. The high molecular weight xylan of the CCE-treated pulps even took part in fiber forming.  相似文献   

4.
An analytical method for determination of the xanthate group distribution on viscoses based on liquid-state NMR spectroscopy was developed. Sample preparation involves stabilization of the xanthate group by allylation followed by derivatization of the remaining free hydroxyl groups at the glucose unit. The method was applied for studying (1) the γ-value (number of xanthate groups per 100 glucose units) of viscose, (2) the distribution of the xanthate groups on the anhydroglucose unit (AGU), and (3) changes of the xanthate group distribution during ripening. Results of the γ-value determination are well comparable with reference methods. Elucidation of the xanthate group distribution on the AGU gives the percentage at the C-6 position and a cumulative share of the positions C-2 and C-3. During ripening, xanthate groups at C-2 and C-3 degrade first, while xanthates at C-6 decompose at a slower rate.  相似文献   

5.

Cellulose dissolution in the viscose process has been facilitated through derivatization by carbon disulphide (CS2) at xanthation stage by converting alkali cellulose (AC) to cellulose xanthate (CX). CX formation has been always accompanied with sulphur based byproducts formation as dictated by the mechanism published in earlier study (Gondhalekar et al. (Cellulose 26 3 1595–1604, 2019)). The sulphur byproducts formed during viscose synthesis are sodium sulphide (Na2S), sodium trithiocarbonate (Na2CS3: TTC) and other minor sulphur compounds. These byproducts continue to form during ripening process as dictated by time and temperature coupled with concentration of free caustic and CS2 present in the system. These byproducts get converted into sodium sulphate (Na2SO4), hydrogen sulphide (H2S), CS2 and other sulphurous compounds during spinning. Overall, uncontrolled ripening without parametric optimization adversely impacts raw material (RM) consumption and creates sustainability challenges. Overall optimization based on viscose process fundamental insights presented in this study will effectively help in achieving operational excellence by reducing rate of undesired reactions to improve RM specific consumption and will compliment overall sustainability efforts in viscose industry.

  相似文献   

6.
13C-NMR spectra of trityl cellulose (Tr-Cell), tosyl cellulose (Ts-Cell), cellulose S-methyl xanthate (Cell-M-Xan), and cellulose formate (CF) in dimethylsulfoxide-d6 were analyzed at 50.4 MHz. It was found that the distribution of substituents in the anhydroglucose units of these cellulose derivatives can be estimated from their ring carbon spectra. The results showed that (i) in Tr-Cell having degree of substitution (DS) lower than 1, the hydroxyl groups at C-6 carbon position are selectively tritylated, (ii) in the case of Ts-Cell, the difference in the relative DS value among three different types of hydroxyl groups is not large, although the relative reactivities of hydroxyl groups toward tosylation decrease in the order C-6 > C-2 > C-3, (iii) in Cell-M-Xan, the hydroxyl groups at C-3 carbon position are mainly substituted, and (iv) the ease of formylation is C-6 > C-2 > C-3. The 100.8 MHz 13C-NMR spectra of O-methyl cellulose (MC) revealed that the reactivity order in commercial MC prepared from alkali cellulose is C-6 ? C-2 > C-3. Concerning MC, its water solubility was also discussed in terms of the distribution of substituents along the cellulose chain.  相似文献   

7.
Considerable growth is expected in the production of man-made cellulose textile fibers, which are commercially produced either via derivatization to form cellulose xanthate (viscose) or via direct dissolution in N-methylmorpholine N-oxide (Lyocell). In the study at hand, cellulosic fibers are spun from a solution in the ionic liquid [DBNH] [OAc] into water, resulting in properties equal or better than Lyocell (tensile strength 37 cN tex?1 or 550 MPa). Spinning stability is explored, and the effects of extrusion velocity, draw ratio, spinneret aspect ratio and bath temperature on mechanical properties and orientation are discussed. With the given set-up, tenacities and moduli are improved with higher draw ratios, while elongation at break, the ratio of wet to dry strength, modulus of resilience and birefringence depend little on draw ratio or extrusion velocity, elastic limit not at all. We find the process robust and simple, with stretching to a draw ratio of 5 effecting most improvement, explained by the orientation of amorphous domains along the fiber axis.  相似文献   

8.
The amount of “hemicellulose” in pulps varies according to wood species, and the pulping processes including their bleaching agents. Making viscose cellulosic and non-cellulosic material is removed during mercerisation which is the first processing step. Low molecular weight material is also formed during the reduction of the degree of polymerisation in order to fit the alkali cellulose for xanthation and dissolving, respectively. In this work commercially available dissolving pulps with respect to their behaviour during the preparation of viscose fibres shall be discussed. For these investigations a Eucalyptus sulphite and a Eucalyptus pre- hydrolysed sulphate pulps were selected.  相似文献   

9.
The production of cellulosic man made fibres by the viscose process has been known for more than 120 years now, but still some aspects are not sufficiently understood in detail. The carbohydrates in the pulp are exposed to varying conditions during the manufacturing process. In the first production step of steeping, the strong alkaline treatment leads to undesirable loss reactions of the cellulose. In this study, a comprehensive kinetic model was developed for process simulation of cellulose degradation for the fist time comprising primary and secondary peeling, stopping and alkaline hydrolysis. A total chlorine free bleached beech sulfite pulp was treated with 18 % sodium hydroxide at 40, 50 and 60 °C for time periods up to 80 h. The corresponding reaction rates, activation energies and frequency factors for all reaction steps were calculated. The peeling-off reaction was of great significance for the cellulose yield loss, due to a contribution of the secondary peeling after random chain scission. The moderate decrease of the intrinsic viscosity and the changes in molar mass distribution indicated the validity of the assumption. Further, a reduction of the carbonyl and an increase of the carboxyl groups in the cellulose were observed due to the formation of the stable metasaccharinic acid at the reducing ends of the molecules. The fibre morphology was investigated by SEM measurements. Already short alkaline treatment times favored the dissolution of fibril fragments from the fibre surface leading to a smooth fibre surface.  相似文献   

10.
Comparative investigations of adsorption properties of chlorhexidine (CHX) on two cellulose fibers, bleached cotton and viscose, were studied in order to obtain dry gauzes covered with known amount of this antiseptic. Adsorption isotherm results carried out at 293 and 323 K can be described by Langmuir isotherm model, nevertheless, at high concentration correlation is better to Freundlich isotherm. Electrokinetic potential evolution with CHX concentration, shows that initial negative zeta potential of cotton and viscose diminish its absolute value as the concentration of the treatment increases; both fibers present an isoelectric point at high concentration of CHX that is 0.3 mM for viscose and 0.8 mM for cotton. Electrostatic interactions between cationic groups of CHX and carboxylic acid groups of the fibers could explain adsorption at low concentration, but when it is higher than these values, possible hydrogen bonding between the amine groups of CHX and hydroxyl groups of cellulose could explain increasing adsorption when it is hindered by electrostatic repulsion as it is predicted by Freundlich model, that describes heterogeneous surface and multilayer adsorption. Adsorption kinetics isotherms reveal that the process is quick with t 1/2 values of 5.4 min for cotton and 2.8 min for viscose. Differences in adsorption behaviour between the two fibers could be attributed to structural differences as we have observed from estimation of CI index based on FTIR spectra. Values obtained 1.6 for viscose and 2.2 for cotton could explain that the amount of CHX adsorbed on viscose is higher than it is on cotton. Finally desorption experiments performed with 0.01 M of NaCl solution at room temperature and pH 6 reveals the possibility of therapeutical application of these fibers although further investigations must be done to optimize the process.  相似文献   

11.
介质和力场协同作用对纳米纤维素形貌结构的调控   总被引:1,自引:0,他引:1  
纤维素是一种由直链多聚糖通过糖苷键连接而成的巨型线性高分子,纤维素分子链通过氢键紧密排列形成纤维素晶体.由于纤维素晶体具有优良的化学可修饰性和机械性能等优点,纳米化加工的纤维素可广泛应用于日常生活和工业生产的各个领域.本文主要介绍了本课题组在机械剪切力作用下,实现纤维素纳米化并同时进行亲水或疏水改性的研究进展,重点介绍了介质极性对纤维素分子链之间相互作用的影响,并通过改变分子链之间的相互作用来调控纳米化纤维素的形貌和亲、疏水性.提出机械外力和环境极性协同作用下,晶面导向剥离纤维素的理论.  相似文献   

12.
Comparative investigations of new regenerated cellulosic fibers, bamboo viscose fiber and Tencel, together with conventional viscose fibers have been carried out to explain the similarity and difference in their molecular and fine structure. The analyses jointly using SEM, XRD and IR reveal that all the three fibers belong to cellulose II. Tencel consists of longer molecules and has a greater degree of crystallinity, while bamboo viscose fiber has a lower degree of crystallinty. TG-DTG-DSC study shows three fibers resemble in thermal behavior with a two-step decomposition mode. The first step is associated to water desorption, suggesting that bamboo viscose fiber holds better water retention and release ability, the second a depolymerization and decomposition of regenerated cellulose, indicating that Tencel is more thermally stable in this process than bamboo and conventional viscose fiber.  相似文献   

13.
Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.  相似文献   

14.
Cellulose, the most abundant renewable organic material on earth, exhibits outstanding properties and useful applications, but also presents a tremendous challenge with regard to economical and environmentally friendly chemical processing. The viscose process, more than 100 year old is still the most widely utilized technology to manufacture regenerated cellulose fibers and films. Viscose fibers are produced today worldwide on a 5 million ton scale with various fiber types ranging from high performance tire yarn to textile filaments and staple fibers with excellent properties close to those of cotton. At Fraunhofer IAP, the technical equipment for viscose preparation, wet spinning of fibers, hollow fibers, and tube-like films is available on a min-plant scale. Research focused on raw materials testing, process optimization with regard to economic and ecological aspects, structural analysis of cellulose during processing, and structure–property relations of fibers and films. Similar to the viscose process, cellulosic fibers can be produced via cellulose carbamate as an environmentally friendly route. In a close cooperation of Fraunhofer IAP with industrial partners, a specific process based on cellulose carbamate was developed on a pilot plant scale, giving fiber properties close to those of conventional viscose fibers. In recent decades the N-methylmorpholine-N-oxide (NMMO)-technology turned out to be a nonderivatizing commercial alternative to the still dominant viscose route. From the very beginning, Fraunhofer IAP has been engaged in investigating the structure formation of cellulose fibers precipitated from NMMO-water solution, revealing structural reasons for the fibrillation tendency of these fibers and means to overcome them. Starting from fiber formation via dry-jet wet spinning, for the first time the blown film formation and the meltblown nonwovens technology were developed for cellulosics on a pilot plant scale at Fraunhofer IAP. Based on the elastic behavior of the dope at elevated temperatures, cellulose can be processed like a melt in the air-gap, offering new possibilities of shaping cellulose like meltable mass polymers. Combining cellulose carbamate with NMMO-monohydrate as a solvent, higher polymer concentrations in the dope and outstanding mechanical properties of the resulting fibers were achieved.  相似文献   

15.
磁性珠状纤维素亲和吸附剂的制备与应用   总被引:5,自引:0,他引:5  
采用反相悬浮包埋技术制备了粒径小于300um、粒径分布窄和湿态孔度高(85%~90%)的高顺磁性珠状纤维素,经高碘酸钠活化后,与具有生物活性的绒毛膜促性腺激素偶联,得磁性亲和吸附剂(每克磁性珠状纤维素上固载300~400IU绒毛膜促性腺激素).  相似文献   

16.
Atomistic simulations of cellulose acetates (CAs) differing in their degree of substitution have been performed and analyzed in terms of conformation and interaction schemes. The stabilization of the structure of these cellulose derivatives is understood as a subtle balance between hydrogen bonds and the dipolar acetate-acetate interactions that are associated with important changes in the macromolecular conformation. On the one hand, cellulose and cellulose triacetate (CTA) are characterized by a single stabilization process (H-bonds and dipolar interactions respectively), showing a similar structure in their melt phase together with similar radii of gyration. On the other hand partially acetylated CAs combine both the conformational properties of cellulose and CTA but present an unexpected conformational domain, named C2, which induces a local hydrophobic pocket. These CAs are also further stabilized by hydrogen bonds between the hydroxyl and acetyl groups. Although idealized, the proposed models are realistic since they are in good agreement with literature experimental results.  相似文献   

17.
Nowadays Celluloseacetate is mainly produced with the acetic acid process. After an activation with acetic acid and sulfuric acid the acetylation of the cellulose starts by adding acetic anhydride. The temperature and the catalyst concentration play an important role for the reaction. Beneath acetylation also degradation of the cellulose chains occurs. In the first step of the process cellulosetriacetate is formed. In a second step, the hydrolysis, several acetyl groups are removed to achieve an average degree of substitution of 2,5. The water content in this step influences the acetyl distribution.  相似文献   

18.
Carbonized cellulose catalyst support was prepared and decorated with 5 wt% Pd nanoparticles using an impregnation method. According to the SEM images, the carbonized cellulose catalyst support kept its original fibrous structure with an average diameter of 200 nm, owing to the carbonization of the cellulose fibers. The surface of the formed carbon fibers is richly coated by palladium with even coverage. The particles can be divided into two groups within which the average diameter is either 5 nm, or 20–70 nm. TGA method was used to measure the amount of the remained carbon, which was 31.71 wt%. The FTIR spectrum shows the presence of oxygen containing functional groups on the surface of the support, which are hydroxyl groups. XRD method was used to determine the phases of Pd on the support where elemental Pd was detected which confirms the success of the activation step. The catalyst was tested in nitrobenzene hydrogenation in methanolic solution as a model reaction for nitroarene hydrogenation, meanwhile the temperature dependence of the reaction was also examined. Catalytic tests were carried out at four different temperatures (283–323 K) and constant hydrogen pressure (20 bar). The highest conversion (>99%) has been reached at 303 K and 20 bar. The corresponding activation energy was calculated by non-linear regression based on Arrhenius plot, and it was 24.16 ± 0.8 kJ/mol. All in all, the granulated cellulose beads are ideal starting points for carbon based catalyst supports.  相似文献   

19.
纤维素基磁性离子交换树脂 Ⅰ.树脂粒径及其分布   总被引:2,自引:0,他引:2  
将含有Fe_3O_4或γ—Fe_2O_3粉末的黄原酸纤维素钠(粘胶)分散于高速搅拌下的油中,在80—100℃脱水成形,可得拉径<150μm的磁性树脂。研究并论述了磁粉、油类、表面活性剂和搅拌速度等因素对树脂粒径及其分布的影响。  相似文献   

20.
The reactivity of dissolving pulps towards derivatization or dissolution is a crucial quality parameter and is mainly determined by the accessibility of the hydroxyl groups. When dissolving pulps are produced from paper-grade pulps by cold caustic extraction (CCE), their reactivity is often inferior as compared to commercial prehydrolysis kraft dissolving pulps. It was hypothesized that pulp reactivity can be enhanced by the introduction of small amounts of substituents to facilitate interchain accessibility. In this study, CCE-treated Eucalyptus globulus kraft paper pulp was subjected to TEMPO-mediated oxidation to initiate partial oxidation of the C6-hydroxyl groups to carboxyl groups. The effect of this pulp modification on the reactivity towards xanthation and the subsequent dissolution in diluted aqueous alkali solution (viscose process) as well as the dissolution in complexing and non-complexing solvents, respectively, was thoroughly examined. The results revealed that the oxidized pulps rich in C6-carboxylate groups impeded the xanthation reaction obviously because of the reduced availability of hydroxyl groups. When N-methylmorpholine-N-oxide monohydrate was used as a direct solvent, a very high content of C6-carboxylate groups was found to reduce the solubility of the pulp fibers as less hydrogen bonds can be formed with NMMO·H2O. In the case of dissolution in the complexing solvent cupriethylenediamine, the dissolution mechanism of cellulose was not deteriorated by the high content of C6-carboxylate groups. Instead, the oxidation procedure increased the hydrophilic character and the swelling capacity of the outer cell wall layers allowed homogeneous dissolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号