首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: A new approach for the determination and comparison of adhesion properties of polymer networks was proposed. One permits to optimize the choice of polymers for composite materials with inorganic fibers (at the absence of binder diffusion to the fiber). For the first time the works of adhesion of polymer to liquids simulating polar or non-polar phases were used for prediction of adhesive properties of network (binder, coupling agent) and for the choice of network provided the best tensile strength of composite material. The correctness of proposed approach was experimentally proved by measuring of tensile strength micro plastics.  相似文献   

2.
简要介绍了2005年度我国内地学者在高分子主要前沿领域基础研究的进展,涉及的领域主要包括特殊构筑高分子的合成、高分子结构表征、光电功能高分子、高分子自组装与超分子聚合物、高分子微纳结构与纳米复合体系、类细胞膜融合分裂的实时观测和生物医用高分子等。  相似文献   

3.
For grafting polypyrrole layers on oxidic substrates, the synthesis and characterization of a new adhesion promoter 11‐(pyrrol‐3‐yl) undecyl trimethoxysilane (PyTMS) were described in this article. The oxidation potential of PyTMS was determined by cyclic voltammetry. The grafting behavior of such an adhesion promoter on oxidized surface and chemical deposition of polypyrrole over the modified oxidized surface were studied. The adsorbed layer on the oxidized substrates thus formed was determined by both contact angle measurements and X‐ray photoelectron spectroscopy. Chemical polymerization of terminal pyrrole moieties on such substrates yielded adhesive polypyrrole films, and SEM image showed that the morphology of the polypyrrole films was influenced by the experimental conditions.  相似文献   

4.
PEP聚醚型非离子表面活性剂复配体系的研究   总被引:8,自引:1,他引:8  
主要讨论了聚氧丙烯-聚氧乙烯-聚氧丙烯(PEP)嵌段共聚醚型非离子表面活性剂分别与十二烷基硫酸钠(SDS0、十六烷基三甲基溴化铵(C16TAB)复配体系的水溶液的表面张力随浓度的变化及其盐效应的影响,计算了二元复配体系水溶液的表面吸附层分子相互作用参数(βσ)及胶束中分子相互作用参数(βm)的值,比较了复配体系的协同效应,并对结果作了理论解释。  相似文献   

5.
通过粗粒化模型,采用分子动力学模拟的方法研究了纳米粒子填充聚合物体系中粒子的凝聚过程.结果表明:纳米粒子和基体粒子间的相互作用决定了团聚体的结构,且作用力越大则团聚体的分形维数越高,当粒子的相互作用强度(εNP)为1.0时,模拟体系中团聚体的分形维数为2.05,与聚酰亚胺炭黑体系透射电镜照片结果一致.对渗流过程的模拟结果表明,相互作用力的增大会导致渗流时间的增加,渗流转变速率减慢,与动态电渗流实验的实测结果相符合.  相似文献   

6.
介绍了近年来碳酸钙表面接枝改性的研究进展,讨论了自由基接枝聚合、辐照接枝聚合和力化学表面接枝聚合及偶联剂预处理与辐照并用接枝聚合改性方法。其中重点讨论了最新研究的偶联剂预处理与辐照并用接枝改性纳米碳酸钙的方法。用此方法制备的聚合物/纳米碳酸钙纳米复合材料在其他力学性能基本不变的情况下,大幅度提高了其缺口冲击强度和断裂伸长率。指出了碳酸钙表面接枝改性应向着提高接枝单体量和采用弹性体单体方面发展。  相似文献   

7.
8.
Selective adhesion and directional migration of endothelial cells (ECs) on biomaterials is critical to realize the rapid endothelialization. In this study, a Cys‐Ala‐Gly (CAG) peptide density gradient is generated on homogeneous cell‐resisting poly(2‐hydroxyethyl methacrylate‐co‐glycidyl methacrylate) brushes by immersing the brushes in a complementary gradient solution of CAG and competitive mercapto‐terminated methoxyl poly(ethylene glycol). The adhesion and spreading of smooth muscle cells (SMCs) is impaired effectively on the gradient surface. About six folds of adherent ECs over SMCs are achieved at the position (10 mm) of highest CAG density on the gradient surface in a co‐culture condition. Due to the gradient cues, ECs migrate fastest with the best directionality of 86.7% at the middle of the gradient, leading to the maximum net displacement as well.  相似文献   

9.
The method of atomistic molecular dynamics simulations is used to investigate the static properties of the organic–inorganic interface in a polymer nanocomposite consisting of polyimide and silica nanoparticles with modified surface. Alkylsilane chains are used as the surface modifiers. The surface density and chains length of the modifier are the main parameters of the simulations. For simplicity, the model of the composite has been constructed as a polymer layer sandwiched between two solid surfaces. Our results show that one can change the properties of the interface between the polymer matrix and the inorganic filler by choosing the molecular weight and surface density of the modifier.

  相似文献   


10.
制备了一种新型的耐酸碱性的水相超疏油铜表面. 在水相中,油滴在其表面上的接触角高达162°,同时极易滚动,表明所得到的表面不但具有水相超疏油特性,同时还表现出较低的黏附性及较强的耐酸碱能力. 在不同pH值(2~12)的水溶液中,这种低黏附超疏油特性依然存在. 研究表明,该表面的水下超疏油及低黏附特性主要源于表面亲水性的化学组成及独特的微纳米等级结构之间的协同作用. 而较强的耐酸碱性则得益于铜材料自身较好的化学稳定性.  相似文献   

11.
Summary : The present paper is concerned with the modelling and the simulation of hygrothermal deformation of composite laminates. The temperature and moisture fields are established by employing the Fick's law for transient and cyclical environmental conditions, then the Classical Plate Theory (CLT) adapted for taking into account such conditions is applied. The hygrothermoelastic law of the composite is supposed to be constant but the diffusion coefficients depend on the temperature. The paper shows the ability of the model to handle complex environmental loading, close to service conditions. Finally, a model of plate with moderate rotations is introduced to predict the nonlinear deformations of unsymmetric plates under temperature and moisture cycling conditions.  相似文献   

12.
The nanoparticle(NP) functionalization is an effective method for enhancing their compatibility with polymer which can influence the fracture property of the polymer nanocomposites(PNCs). This work aims to further understand the cavitation and crazing process, hoping to uncover the fracture mechanism on the molecular level. By adopting a coarse-grained molecular dynamics simulation, the fracture energy of PNCs first increases and then decreases with increasing the NP functionalization degree α while it shows a continuous increase with increasing the interaction ε_(pA) between polymer and modified beads. The bond orientation degree is first characterized which is referred to as the elongation. Meanwhile, the stress by polymer chains is gradually reduced with increasing the α or the ε_(pA) while that by NPs is enhanced.Furthermore, the percentage of stress by polymer chains first increases and then decreases with increasing the strain while that by NPs shows a contrast trend. Moreover, the number of voids is quantified which first increases and then decreases with increasing the strain which reflects their nucleation and coalescence process. The voids prefer to generate from the polymer-NP interface to the polymer matrix with increasing α o r ε_(pA).As a result, the number of voids first increases and then decreases with increasing α while it continuously declines with the ε_(pA). In summary, our work provides a clear understanding on how the NP functionalization influences the cavitation and crazing process during the fracture process.  相似文献   

13.
马新  陈仓佚  唐萍  邱枫* 《化学学报》2014,72(2):208-214
我们运用高分子自洽场理论方法,结合“masking”技术,研究了高分子共混刷接枝到无限长圆柱表面上的微相分离行为. 理论预言了柱面上高分子共混刷的两种典型相分离形态:平行条纹相和环状相. 我们考察了圆柱半径、接枝密度以及相互作用参数对二者的影响,给出了体系在不同参数下相分离形态的相图,并且从相分离程度的角度对平行条纹相和环状相之间的转变作了解释. 我们还研究了平行条纹相相区数目以及环状相交替周期随圆柱半径的变化. 理论所预言的平行条纹相和环状相的存在以及体系参数对其稳定性的影响将有助于实验上合理设计、制备这类新颖的高分子刷材料.  相似文献   

14.
In this work, the green method was used to synthesize Sn2+-metal complex by polyphenols (PPHs) of black tea (BT). The formation of Sn2+-PPHs metal complex was confirmed through UV-Vis and FTIR methods. The FTIR method shows that BT contains NH and OH functional groups, conjugated double bonds, and PPHs which are important to create the Sn2+-metal complexes. The synthesized Sn2+-PPHs metal complex was used successfully to decrease the optical energy band gap of PVA polymer. XRD method showed that the amorphous phase increased with increasing the metal complexes. The FTIR and XRD analysis show the complex formation between Sn2+-PPHs metal complex and PVA polymer. The enhancement in the optical properties of PVA was evidenced via UV-visible spectroscopy method. When Sn2+-PPHs metal complex was loaded to PVA, the refractive index and dielectric constant were improved. In addition, the absorption edge was also decreased to lower photon. The optical energy band gap decreases from 6.4 to 1.8 eV for PVAloaded with 30% (v/v) Sn2+-PPHs metal complex. The variations of dielectric constant versus wavelength of photon are examined to measure localized charge density (N/m*) and high frequency dielectric constant. By increasing Sn2+-PPHs metal complex, the N/m* are improved from 3.65 × 1055 to 13.38 × 1055 m−3 Kg−1. The oscillator dispersion energy (Ed) and average oscillator energy (Eo) are measured. The electronic transition natures in composite films are determined based on the Tauc’s method, whereas close examinations of the dielectric loss parameter are also held to measure the energy band gap.  相似文献   

15.
共混聚合物辐射效应研究的进展   总被引:4,自引:1,他引:3  
本文综述了近十几年来国内外共混聚合物辐射效应研究的进展情况.内容包括辐射交联理论在共混聚合物体系中的适用性、共混体系的相容性、相态结构对辐射效应的影响及共混组份间的辐射敏化及保护效应等.  相似文献   

16.
电磁处理对水溶液中碳酸钙微粒沉降及附着性能的影响   总被引:1,自引:0,他引:1  
通过Zeta电位、表面自由能及其分量、粘附功等热力学参数的测定与分析, 研究了电磁处理对等物质的量Na2CO3与CaCl2溶液混合生成的碳酸钙微粒的沉积特性及阻垢机理. 结果显示电磁处理可以使碳酸钙微粒的Zeta电位绝对值减小约5 mV, 同时加快碳酸钙微粒的沉降速度. 经电磁处理生成的碳酸钙微粒的表面自由能为31.59 mJ•m-2, 比未经处理时减小30%, 同时表面自由能Lifshitz-van der Waals分量从处理前的43.53 mJ•m-2下降到25.50 mJ•m-2, 说明成垢溶液的电磁处理可以提高碳酸钙微粒的热力学稳定性. 水溶液中碳酸钙微粒与316L不锈钢表面之间的理论粘附功计算显示, 电磁处理降低了该理论粘附功, 使碳酸钙微粒在不锈钢表面的附着能力下降.  相似文献   

17.
Glycans, as the most peripheral cell surface components, are the primary candidates to mediate the initial steps of cell recognition and adhesion via glycan–glycan binding. This molecular mechanism was quantitatively demonstrated by biochemical and biophysical measurements at the cellular and molecular level for the glyconectin 1 β-d-GlcpNAc3S-(1→3)-α-l-Fucp glycan structure (GN1). The use of adhesion blocking monoclonal antibody Block 2 that specifically recognize this epitope showed that, besides Porifera, human colon carcinoma also express this structure in the apical glycocalyx. Here we report that Block 2 selectively immune-precipitate a Mr 580 × 103 (g580) acidic non-glycosaminoglycan glycan from the total protein-free glycans of Lytechinus pictus sea urchin hatched blastula embryos. Immuno-fluorescence confocal light microscopy and immunogold electron microscopy localized the GN1 structure in the apical lamina glycocalyx attachments of ectodermal cells microvilli, and in the Golgi complex. Biochemical and immune-chemical analyses showed that the g580 glycan is carrying about 200 copies of the GN1 epitope. This highly polyvalent g580 glycan is one of the major components of the glycocalyx structure, maximally expressed at hatched blastula and gastrula. The involvement of g580 GN1 epitope in hatched blastula cell adhesion was demonstrated by: (1) enhancement of cell aggregation by g580 and sponge g200 glycans, (2) inhibition of cell reaggregation by Block 2, (3) dissociation of microvilli from the apical lamina matrix by the loss of its gel-like structure resulting in a change of the blastula embryonal form and consequent inhibition of gastrulation at saturating concentration of Block 2, and (4) aggregation of beads coated with the immune-purified g580 protein-free glycan. These results, together with the previous atomic force microscopy measurements of GN1 binding strength, indicated that this highly polyvalent and calcium ion dependent glycan–glycan binding can provide the force of 40 nanonewtons per single ectodermal cell association of microvilli with the apical lamina, and conservation of glycocalyx gel-like structure. This force can hold the weight of 160,000 cells in sea water, thus it is sufficient to establish, maintain and preserve blastula form after hatching, and prior to the complete formation of further stabilizing basal lamina.  相似文献   

18.
Energy and water related problems have attracted strong attention from scientists across the world because of deficient energy and water pollution. Following this line, new strategy depended on preparing nanolayers of Al/Zn and magnetic nanoparticles of cobalt iron oxides nanocomposite in addition to long chains of hydrocarbons of stearic acid to be used as roofs, fillers and pillars; respectively, to design optical-active nanohybrids in sunlight for removing the colored pollutants from water in few minutes. By using long chains of hydrocarbons of stearic acid, X-ray diffraction (XRD) results and TEM images showed expansion of the interlayered spacing from 0.76 nm to 2.02 nm and insertion of magnetic nanoparticles among the nanolayers of Al/Zn. The optical properties and activities showed that the nanohybrid structure based on zinc oxide led to clear reduction of the band gap energy from 3.3 eV to 2.75 eV to be effective in sunlight. Photocatalytic degradation of the dye of acid green 1 confirmed the high activity of the prepared zinc oxide nanohybrids because of a complete removal of the dye after ten minutes in sunlight. Finally, this strategy was effective for producing photo-active nanohybrids for using renewable and non-polluting energy for purifying water.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号