首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyurethane microspheres were prepared by polyaddition of ethylene glycol (EG) and tolylene-2,4-diisocyanate (TDI) at 60 °C in cyclohexane as the organic dispersion medium, in the presence of dibutyl tin dilaurate (DBTDL) as catalyst and poly(styrene)-b-poly(ethylene oxide) block copolymers or P-hydroxypolystyrenes as the steric stabilizers. Different parameters such as the manner of addition of the reactants, the concentration, and length of the stabilizer were varied to tune the polyurethane particle size. When P-OH polystyrenes of low molar mass ([`(M)]n\bar M_n =2000-3000 g mol-1) were used as the reactive stabilizers of dispersion, polyurethane particles in a tunable size range of 0.2-5 µm with a narrow size distribution (span = 0.7) could be prepared.  相似文献   

2.
The elaboration in a dispersed organic medium of calibrated polyurethane particles with a core-shell structure is presented in this paper. The objective could be achieved by using a series of reactive steric stabilizers of the type ω-(OH)x-poly(n-butyl acrylate), -polystyrene, -polysiloxane or -polybutadiene (x=1 or 2) that play the role of surfmers during the polyaddition reaction between ethylene glycol and tolylene-2,4-diisocyanate, in cyclohexane as a dispersant medium. The final size of the polyurethane particles (0,5-10 μm) was found to be a function of the steric stabilizer characteristics (nature, molar mass and concentration) and of the addition procedure of the different reactants. These novel particles constituted of a polyurethane core and various shells depending on the stabilizer used exhibit specific and original properties.  相似文献   

3.
The synthesis of waterborne polyurethane cationomers was successfully carried out. Different proportions of α,ω‐di(hydroxyl)polydimethylsiloxane (PDMS) modifier (0–7.3% by weight) were applied. Analysis of IR spectra confirmed the structure of obtained polyurethane cationomers and the incorporation of a modifier into the polyurethane structure. The differential scanning calorimetry (DSC) method was employed for the microstructural assessment of the obtained materials. A clear decrease of the degradation temperature with increasing amounts of incorporated PDMS indicates immiscibility part of the polysiloxane segments with soft segments derived from polyethylene glycol. Changes were discussed in the free surface energy and its components, as calculated independently according to the method suggested by Owens–Wendt, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Test results of contact angle measurements indicated that with increasing content of the polysiloxane in the analyzed films, the contact angles increase. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
A novel bifunctional vinyl‐terminated polyurethane macromonomer was applied to the dispersion polymerization of styrene in ethanol. Monodisperse polystyrene (PS) microspheres were successfully obtained above 15 wt % of macromonomer relative to styrene. The steep slope from the reduction of the average particle size reveals that the macromonomer can efficiently stabilize higher surface area of the particles when compared with a conventional stabilizer, poly(N‐vinylpyrrolidone). The stable and monodisperse PS microspheres having the weight‐average diameter of 1.2 μm and a good uniformity of 1.01 were obtained with 20 wt % polyurethane macromonomer. The grafting ratio of the PS calculated from 1H NMR spectra linearly increased up to 0.048 with 20 wt % of the macromonomer. In addition, the high molecular weights (501,300 g/mol) of PS with increased glass transition and enhanced thermal degradation temperature were obtained. Thus, these results suggest that the bifunctional vinyl‐terminated polyurethane macromonomer acts as a reactive stabilizer, which gives polyurethane‐grafted PS with a high molecular weight. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3566–3573, 2005  相似文献   

5.
Star‐shaped polybutadiene stars were synthesized by a convergent coupling of polybutadienyllithium with 4‐(chlorodimethylsilyl)styrene (CDMSS). CDMSS was added slowly and continuously to the living anionic chains until a stoichiometric equivalent was reached. Gel permeation chromatography‐multi‐angle laser light scattering (GPC‐MALLS) was used to determine the molecular weights and molecular weight distribution of the polybutadiene polymers. The number of arms incorporated into the star depended on the molecular weight of the initial chains and the rate of addition of the CDMSS. Low molecular weight polybutadiene arms (Mn = 640 g/mol) resulted in polybutadiene star polymers with an average of 12.6 arms, while higher molecular weight polybutadiene arms (Mn = 16,000 g/mol) resulted in polybutadiene star polymers with an average of 5.3 arms. The polybutadiene star polymers exhibited high 1,4‐polybutadiene microstructure (88.3–93.1%), and narrow molecular weight distributions (Mw/Mn = 1.11–1.20). Polybutadiene stars were subsequently hydrogenated by two methods, heterogeneous catalysis (catalytic hydrogenation using Pd/CaCO3) or reaction with p‐toluenesulfonhydrazide (TSH), to transform the polybutadiene stars into polyethylene stars. The hydrogenation of the polybutadiene stars was found to be close to quantitative by 1H NMR and FTIR spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 828–836, 2006  相似文献   

6.
Simultaneous interpenetrating networks from poly(methyl methacrylate‐co‐ethyleneglycol dimethacrylate) (PA) and a hydroxyl‐terminated polybutadiene‐based polyurethane (PU) were prepared with various hard‐segment contents (X) in the PU and different ratios (PU/PA) between the components. The level of the reinforcement, the mechanism of molecular failure, and the phase inversion depended strongly on X. Dynamic mechanical results indicated that the interpenetration occurred in the rigid blocks of the PU. The improved thermal and mechanical properties observed with higher values of X were interpreted in terms of the molecular weight and polydispersity of the hard blocks in the PU. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2861–2872, 2000  相似文献   

7.
Dispersion polymerization of 2-hydroxyethyl methacrylate using four categories of polymeric stabilizers in a mixture of good and poor solvents was performed to produce polymeric particles. The stabilizers employed were methyl methacrylate and styrene homopolymers, methacryloyl-terminated poly(methyl methacrylate) and polystyrene macromonomers, an amphiphilic poly(methyl methacrylate-co-methacrylic acid-graft-styrene), and polybutadiene derivatives containing reactive vinyl groups. Dispersion copolymerization with a small amount of the macromonomer gave micron-size particles with relatively narrow size distribution. The amphiphilic graft copolymer and the polybutadiene derivatives also afforded monodisperse particles. The mixed ratio between good and poor solvents greatly affected the particle size and size distribution. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
A relatively high-molecular-weight polyurethane based on MDI and ethylene glycol was prepared and characterized. This polymer was metalated with sodium hydride in N,N-dimethylformamide (DMF) at about 0°C. Metalation was confirmed principally by spectroscopic identification of the N-methyl derivative obtained by coupling the metalated polymer with methyl iodide. Under appropriate reaction conditions the metalated polyurethane was used for the anionic graft polymerization of the reactive monomers acrylonitrile and ethylene and propylene sulfides. Attempted anionic graft polymerizations with other monomers, including styrene and ethylene and propylene oxides, were unsuccessful. The polyurethane grafted with acrylonitrile was separated by fractionation from accompanying small amounts of polyacrylonitrile, a low-molecular-weight homopolymer. One sample of polyurethane grafted with acrylonitrile was identified by microanalysis, IR, NMR, and increase in weight and was also characterized by differential thermal analysis.  相似文献   

9.
This study describes a novel and facile synthesis strategy for a styrene‐butadiene rubber (SBR)‐like polymer via Friedel–Crafts‐type reaction between aromatic compounds and polybutadiene using an aluminum chloride as a catalyst. Although gelation was induced by a reaction of a generated carbocation with olefins in other polybutadiene chains in benzene and toluene because of their low electron densities on their rings, anisole with a higher electron density reacted with the polybutadiene carbocation efficiently. The introduction ratio of anisole increased as the reaction proceeded, and the obtained polymer, BRAN polymer, contained 15% anisoles for olefins in the polybutadiene in 4 h at 80 °C as estimated by 1H NMR analysis. The glass‐transition temperature (Tg) of the BRAN polymer also increased with anisole content (Tg ~?50 °C when anisole contents 20%). The vulcanizate containing the BRAN polymer showed higher mechanical properties compared to samples using other matrix polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 841–847  相似文献   

10.
Summary: The free‐radical addition of ω‐functional mercaptans to the vinyl double bonds of 1,2‐polybutadiene‐block‐poly(ethylene oxide) copolymers was used for modular synthesis of well‐defined functional block copolymers. The modification reaction proceeds smoothly and yields quantitatively functionalized block copolymers (1H NMR and FT‐IR spectroscopy) without disturbing the molecular‐weight distribution of the parent copolymer (PDI < 1.09, size exclusion chromatography).

The modular synthetic pathway towards the functional block copolymers reported here.  相似文献   


11.
Well‐defined polyurethane–polydimethylsiloxane particles of tunable diameter in the range of 0.5–20 μm were synthesized in “one‐shot” by step‐growth polymerization using supercritical carbon dioxide (scCO2) as a dispersant medium. Polymerizations were carried out at 60 °C and above 25 MPa, after the solubility of each reactant in scCO2 has been determined in its typical reaction concentration. The synthesis of such copolymers was achieved by polyaddition between short aliphatic diols, that is, ethylene glycol, 1,4‐butanediol (BD) or polyethylene oxide (Mn = 200 g mol?1), and tolylene‐1,4‐di‐isocyanate (TDI) in the presence of mono or di‐isocyanate‐terminated polydimethylsiloxane (PDMS) as reactive stabilizers and dibutyltin dilaurate as a catalyst. The nature of the diol used as well as the functionality of the reactive stabilizer incorporated was found to have a dramatic effect on the molar mass and the morphology of the resulting product. Thus, copolymers obtained from the polyaddition of BD and TDI in the presence of di‐isocyanate‐terminated PDMS exhibit molar mass up to 90,000 g mol?1. Thermal behaviors of copolymers were also examined by differential scanning calorimetry. All samples exhibited only one glass transition temperature (Tg) and were found to be totally amorphous. A logical decrease of the Tg was observed as the length of the diol incorporated increased, that is, as the density of urethane linkages within the polymer decreased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5649–5661, 2007  相似文献   

12.
The microstructure of polybutadiene synthesized via cationic polymerization using TiCl4‐based initiating systems has been investigated using 1D (1Н, 2Н, and 13С) and 2D (HSQC and HMBC) NMR spectroscopy. It was found that trans‐1,4‐unit is predominant structure of unsaturated part of polymer chain. Besides, the small amount of 1,2‐structures was also detected, while cis‐1,4‐units were totally absent. The signals of carbon atoms of three types of head groups (trans‐1,4‐, 1,2‐, and tert‐butyl) and two types of end groups (trans‐1,4‐Cl and 1,2‐Cl) were identified for the first time in macromolecules of cationic polybutadiene. It was showed that tert‐butyl head groups were formed due to the presence in monomer of admixtures of isobutylene. The new methodology for calculation of the content of different structural units in polybutadiene chain as well as the head and end groups was proposed. It was established that main part of 1,2‐units distributed randomly along the polybutadiene chain as separate units between trans‐1,4‐structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 387–398  相似文献   

13.
A mixture of homopolymer and graft copolymer was obtained by adding the monomer at 0°C to the polylithiodiene solution. Styrene, methyl methacrylate, and acrylonitrile were used as the monomers. Polylithiodienes were prepared by the metalation of diene polymers, i.e., polybutadiene or polyisoprene, with the use of n-butyllithium in the presence of a tertiary amine (N,N,N′,N′-tetramethylethylenediamine) in n-heptane. The graft copolymers were separated by solvent extraction and were confirmed by turbidimetric titration and elementary analysis. Oxidation of the polybutadiene–styrene grafts revealed that the molecular weight of the side chains was the same as the molecular weight of the free polystyrene formed. The grafting efficiency and grafting percentage were studied for polybutadiene–styrene graft copolymers prepared under various conditions.  相似文献   

14.
Well-defined hydroxy end-functionalized poly(n-butyl acrylate)s (PBA-OH and PBA-(OH)2), were prepared by atom transfer radical polymerization (ATRP) and used as reactive stabilizers for the preparation of polyurethane in dispersed medium. PBA-OH was obtained by end-capping the growing poly(n-butyl acrylate) chains with allyl alcohol added in excess at the end of the polymerization. The two hydroxyl functions of PBA-(OH)2 were fixed at one end of the poly(n-butyl acrylate) chains either by initiation or by chain-end functionalization reactions. The latter were protected under the form of cyclic acetal and attached either to the initiator bearing a secondary bromine or to the terminating agent carrying a poorly reactive vinylic unsaturation. PBA-OH and PBA-(OH)2 have been successfully used as reactive stabilizers (surfmers) to prepare core-shell polyurethane particles in dispersed medium. The final particle size was found to be very much dependent to parameters such as the molar mass, concentration and valence of the reactive stabilizer as well as the manner of addition of the reactants during the procedure.  相似文献   

15.
Tannic‐acid‐based low volatile organic compound‐containing waterborne hyperbranched polyurethane was prepared. In order to improve the performance, it was modified in an aqueous medium using a glycerol‐based hyperbranched epoxy and vegetable‐oil‐based poly(amido amine) at different wt%. The combined system was cross‐linked by heating at 100°C for 45 min. Fourier transform infrared spectroscopy and swelling study were used to confirm the curing. A dose‐dependent improvement of properties was witnessed for the thermoset. Thermoset with 30 wt% epoxy showed excellent improvements in mechanical properties like tensile strength (~3.4 fold), scratch hardness (~2 fold), impact resistance (~1.3 fold), and toughness (~1.7 fold). Thermogravimetric analysis revealed enhancement of thermal properties (maximum 70°C increment of degradation temperature and 8°C increment of Tg). The modified system showed better chemical and water resistance compared with the neat polyurethane. Biodegradation study was carried out by broth culture method using Pseudomonas aeruginosa as the test organism. An adequate biodegradation was witnessed, as evidenced by weight loss profile, bacterial growth curve, and scanning electron microscope images. The work showed the way to develop environmentally benign waterborne polyurethane as a high‐performance material by incorporating a reactive modifier into the polymer network. Use of benign solvent and bio‐based materials as well as profound biodegradability justified eco‐friendliness and sustainability of the modified system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A series of novel structured latex particles with interpenetrating polymer network (IPN) cores and glassy SAN shells were developed in an attempt to investigate the feasibility of these polymers as both toughening and damping agents in thermoplastics. The IPN cores were composed of one impact part (polybutadiene based) and one damping part (acrylic based, with Tg around +10°C). The particle morphologies of these polymers were determined by TEM. The glass transitions and mechanical behavior of the polymers were characterized from DMS. The effect of different components on the final core/shell particle morphologies and mechanical properties was studied. The mechanical behavior of core/shell particles with IPN cores was also compared with that of separate core/shell and multilayered core/shell particles. In addition, normal core/shell synthesis (rubbery part first then the glassy part) and inverted core/shell synthesis (glassy part first then the rubbery part) were performed to provide another access for morphology control. It was found that the core/shell latex particles with poly(butyl acrylate) based copolymers are more miscible than poly(ethylhexyl methacrylate)-based copolymers. The high grafting efficiency of poly(butyl acrylate) plays an important role in governing phase miscibility. The latex particles synthesized by the inverted core/shell mode showed higher miscibility than the normal synthesized ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2193–2206, 1997  相似文献   

17.
S‐allyl‐4‐methyldithiobenzoate was synthesized and used as a chain transfer agent for the RAFT polymerization of butyl acrylate to produce a functionalized acrylic rubber. A solution of 8 wt% of this functionalized rubber was prepared in styrene and polymerized to generate a material called acrylic rubber‐modified polystyrene (AMP) constituted by well‐dispersed particles of poly(butyl acrylate)‐block‐poly(styrene) into a polystyrene matrix. Impact strength of injection‐molded samples of AMP was measured and compared with the general purpose polystyrene (GPPS) and the high impact polystyrene (HIPS). AMP itself showed an impact strength value similar to GPPS; however, when AMP was blended with conventional HIPS, the resulting material exhibited an improvement of 76–91% as compared to HIPS by itself, without affecting negatively tensile properties. Transmission electron microscopy analysis revealed both kinds of dispersed phases, i.e. the typical salami particles of polybutadiene coming from HIPS (size: 0.5–2 µ) and small particles from poly(butyl acrylate)‐block‐poly(styrene) (size: ~50 nm). We clearly showed that such a bimodality of the particle size distribution caused the positive synergistic effect on impact strength. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A series of polyurethane‐block‐poly(trifluoropropylmethyl)siloxane (PUFS) elastomers were prepared via a two‐step process from toluenediisocyanate (TDI), α ω‐bis(3‐aminopropyldiethoxylsilane) poly(trifluoropropylmethyl)siloxane (APFS), and poly(tetramethylene oxide) (PTMO). The PUFS films were formed through moisture curing and characterized by DSC, DMTA, TGA, mechanical testing, and water contact angle. It was found that the extent of microphase separation of the PUFS system would increase with the increase in APFS content, and result in the decrease in the tensile strength and the thermal stability. On the other hand, the crosslink density of the PUFS system would apparently increase with the increase in the TDI content, which reduced the microphase separation and improved the tensile properties and the thermal stability of the PUFS elastomers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A series of α, ω–bishydroxyl terminated PDMS, hydroxypoly(ethylene oxide) propyl–b–polydimethylsiloxane–b–propyl hydroxypoly(ethylene oxide) (HPEO–PDMS–HPEO) was prepared by a hydrosilation reaction of monoallyloxy substituted poly(ethylene oxide) with α,ω–bishydrogen terminated PDMS (HPDMS) that obtained via acid–catalyzed ring–opening polymerization of octamethylcyclotetrasiloxane with 1,1,3,3–tetramethyldisiloxane. Chloroplatinic acid was employed as the catalyst of hydrosilation. The molecular weight of HPEO–PDMS–HPEO could be controlled easily by varying the chain length of HPDMS. FTIR and 1H–NMR spectroscopy were used to identify the structure of HPEO–PDMS–HPEO and HPDMS. The conversion of Si–H bond to Si–C bond was affected by the catalyst amount, reaction time and temperature. It was found that the optimum condition of hydrosilation reaction was the catalyst amount of 22 μg/g and 5 h time at 100°C. Synthesized HPEO–PDMS–HPEO showed good storage stability at ambient temperature. Urethane reaction of OH and NCO group revealed that HPEO–PDMS–HPEO was more reactive toward to diisocyanate than α, ω –bishydroxylbutyl terminated PDMS.  相似文献   

20.
A soluble polyurethane was synthesized by a reaction of OH-telechelic, 1,2-rich, low-molecular-weight polybutadiene with toluene 2,4-diisocyanate. To the pendent vinyls of the polybutadiene blocks of the polyurethane, a sterically hindered phenolic antioxidant bearing a sulfanyl group (i.e., 6-sulfanylhexyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) was added by a free-radical mechanism (in varying degrees of conversion). The self-stabilized polyurethane thus formed, bearing the antioxidant structures as side chains, was mixed in varying concentrations with the original (unstabilised) polyurethane and the thermo-oxidative stability of the mixtures was evaluated by DSC in air. The antioxidant effect of the polymeric stabilizer on the oxidative stability of polyurethane, expressed as the oxidation onset temperature, is approximately the same as that of a low-molecular-weight analogue, the commercial octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate (Irganox 1076), as related to the same molar concentration of the phenolic moiety, but the former is superior to the latter due to its ability to persist in the matrix. In both cases, the onset temperature of oxidation increases with increasing mole ratio of the phenolic structure and the total butadiene units in the mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号