首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many laser applications such as drilling, welding and cutting, the role of the plasma in the transfer of energy between the laser beam and the metal surface appears to be rather important. It depends on several parameters such as laser wavelength, irradiation time and deposited energy but especially on the buffer gas nature. In this work the plasma is initiated by a TEA-CO2 laser beam perpendicularly focussed onto a Ti target (100 MW/cm2), in a cell containing He, Ar or a He-Ar mixture as buffer gas. The plasma is studied by time and space resolved spectroscopic diagnostics. The results show that helium allows target erosion whereas a highly absorbing breakdown plasma develops in argon shielding the target from the subsequent laser heating. With only 20% Ar in He, a strong quenching of the He plasma by Ar occurs, and the Ar plasma effect is dominant.  相似文献   

2.
We report on the dynamical expansion of pulsed laser ablation of aluminum in ambient pressure of nitrogen using images of the expanding plasma. The plasma follows shock model at pressures of 0.1 Torr and drag model at 70 Torr, respectively, with incident laser energy of 265 mJ. The plasma expansion shows unstable boundaries at 70 Torr and is attributed to Rayleigh-Taylor instability. The growth time of Rayleigh-Taylor instability is estimated between 0.09 and 4 μs when the pressure is varied from 1 to 70 Torr. The pressure gradients at the plasma-gas interface gives rise to self-generated magnetic field and is estimated to be 26 kG at 1 Torr ambient pressure using the image of the expanding plasma near the focal spot. The varying degree of polarization of Al III transition 4s 2S1/2-4p 23/2 at 569.6 nm gives rise to anisotropic emission and is attributed to the self-generated magnetic field that results in the splitting of the energy levels and subsequent recombination of plasma leading to the population imbalance.  相似文献   

3.
Fluorescence measurements have been used to characterize the velocity of atoms in a femtosecond-laser-produced plasma. Nanogram amounts of a copper sample were ablated by the focused radiation (λ=775 nm) of an all-solid-state laser. The laser was operated at a pulse rate of 10 Hz with an energy of 200μJ per pulse. The microplasma expanded into a defined argon atmosphere of pressures between 0.02 and 850 mbar. Atomic fluorescence was excited in the laser plume by a dye-laser pulse with the wavelength set to the line Cu I 282.4 nm. The narrowed beam of the dye-laser was directed into the plasma at different heights above the sample surface. The fluorescence radiation was measured with an échelle-spectrometer, equipped with an intensified-charge-coupled device as the detector. The velocity depends strongly on the pressure of the ambient atmosphere and the distance from the sample surface. The highest velocity found at an argon pressure of 0.02 mbar was 1.0×106 cm s−1.  相似文献   

4.
2 Cu3O7, using a Q-switched Nd:YAG laser is investigated by time-resolved emission-spectroscopic techniques at various laser irradiances. It is observed that beyond a laser irradiance of 2.6×1011 W cm-2, the ejected plume collectively drifts away from the target with a sharp increase in velocity to 1.25×106 cm s-1, which is twice its velocity observed at lower laser irradiances. This sudden drift apparently occurs as a result of the formation of a charged double layer at the external plume boundary. This diffusion is collective, that is, the electrons and ions inside the plume diffuse together simultaneously and hence it is similar to the ambipolar diffusion of charged particles in a discharge plasma. Received: 30 January 1998/Revised version: 12 June 1998  相似文献   

5.
Received: 17 June 1998/Revised version: 17 September 1998  相似文献   

6.
Received: 18 August 1997/Revised version: 9 March 1998  相似文献   

7.
Optical emission of plasma is used to investigate the characteristics of dynamics distribution in the plume gen- erated by ablation of a SiC sample using Nd:YAG laser. The plume expansion dynamics is characterized by time-of-flight measurement. We find that the profiles of Si (I) (390.55 nm) split into two components and the Si (1I) (634. 71 nm) spectra show two distinct expansion dynamics regions. The time-of-flight measurement of Si(ll) (634. 71 nm) under different laser irradianee conditions, from 0.236 G W/cm^2 to 1.667 G W/cm^2, are presented and discussed.  相似文献   

8.
M. Anija 《Optics Communications》2009,282(18):3770-3774
We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 1015 W/cm2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.  相似文献   

9.
10.
11.
A hot particle jet is induced as a laser pulse from a free oscillated Nd:YAG laser focused on a coal target. The particle jet successfully initiates combustion in a premixed combustible gas consisting of hydrogen, oxygen, and air. The experiment reveals that the ionization of the particle jet is enhanced during the laser pulse. This characteristic is attributed to the electron cascade process and the ionization of the particles or molecules of the target. The initial free electrons, which are ablated from the coal target, are accelerated by the laser pulse through the inverse Bremsstrahfung process and then collide with the neutrals in the jet, causing the latter to be ionized.  相似文献   

12.
2 . Received: 20 January 1997/Accepted: 23 June 1997  相似文献   

13.
The spatial distribution of electron density in argon microplasmas produced by laser ablation of solids has been investigated by time-resolved emission spectroscopy. The electron density was derived from Stark broadening and shift of spectral lines. It was found that the radial gradient of the electron density is much smaller than the gradient of the atomic number density of atoms ablated by the laser into the plasma. The almost homogeneous plasma conditions in the centre of the microplasmas are essential for quantitative element analysis of solid samples by laser ablation. On the other hand, because of the homogeneous conditions microplasmas are excellent sources for measurements of reliable Stark broadening and shift parameters of atomic and ionic spectral lines of all elements which can be ablated by lasers from solid samples.  相似文献   

14.
P.K. Shukla 《Physics letters. A》2009,373(20):1771-1772
It is shown that the non-stationary ponderomotive force of large amplitude electromagnetic waves in plasmas with streaming electrons can spontaneously create magnetic fields. The present result may account for the magnetic fields in laser-produces plasmas, in cosmic plasmas, as well as in galactic and inter-galactic spaces.  相似文献   

15.
The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2 (C^3 Ⅱu) molecule is calculated according to its rotational emission band near 380.5 nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.  相似文献   

16.
In the nanosecond laser ablation regime, absorption of laser energy by the plasma during its early stage expansion critically influences the properties of the plasma and thus its interaction with ambient air. These influences can significantly alter spectral emission of the plasma. For organic samples especially, recombination of the plasma with the ambient air leads to interfering emissions with respect to emissions due to native species evaporated from the sample. Distinguishing interfering emissions due to ambient air represents a critical issue for the application of laser-induced breakdown spectroscopy (LIBS) to the analysis of organic materials. In this paper, we report observations of early stage expansion and interaction with ambient air of the plasma induced on a typical organic sample (nylon) using time-resolved shadowgraph. We compare, in the nanosecond ablation regime, plasmas induced by infrared (IR) laser pulses (1064 nm) and ultraviolet (UV) laser pulses (266 nm). Nanosecond ablation is compared with femtosecond ablation where the post-ablation interaction is absent. Subsequent to the early stage expansion, we observe for each studied ablation regime, spectral emission from CN, a typical radical for organic and biological samples. Time-resolved LIBS allows identifying emissions from native molecular species and those due to recombination with ambient air through their different time evolution behaviors.  相似文献   

17.
Laser ablation of titanium in vacuum was performed using single- and dual-pulse regime in order to study crater formation. Crater profiles were analyzed by optical microscopy. It was found that the repetition-rate plays an important role in a process of laser ablation. The drilling is most effective for the highest repetition-rate. For the same total number of laser pulses clear drilling enhancement was achieved by dual-pulse regime of ablation in comparison to single-pulse regime. The strongest ablation rate in dual-pulse regime was achieved for the delay time between the pulses τ = 370 ns. Results are discussed in terms of decreased ablation threshold due to continuous heating of the target during the experiment.  相似文献   

18.
Using hexamethyldisiloxane (HMDSO) monomer, the magnetic nanoparticles (NPs) of nickel oxide (NiO) were modified by using an atmospheric room-temperature plasma fluidized bed (ARPFB). The plasma gas temperature of the ARPFB was not higher than 325 K, which was favorable for organic polymerization. The plasma optical emission spectrum (OES) of the gas mixture consisting of argon (Ar) and HMDSO was recorded by a UV-visible monochromator. The as-treated NPs were characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the assembling NPs were isolated greatly after modified by the organosilicon polymer. Moreover, this treatment process changed the wettability of the NPs from super-hydrophilicity to super-hydrophobicity, and the contact angle (CA) of water on the modified NPs surface exceeded 150°. Therefore, the ARPFB is a prospective technology for the NPs surface modification according to the different requirements.  相似文献   

19.
By adopting a fast photography and time-resolved optical emission spectrometry, we have investigated the effects of transverse magnetic field on the expansion dynamics and enrichment of Zn atoms and Zn+ ions in a plume produced by laser ablation of a Zn target in oxygen atmosphere. Plume splitting due to the magnetic field was apparent but the splitting patterns of Zn and Zn+ were totally different. The surface morphology and photoluminescence characteristics also changed significantly. In particular, the growth rate increased by as much as 2.4-4.3 times compared to the conventional PLD method.  相似文献   

20.
The main objective of this work is to obtain the electron temperature in an argon surface-wave-produced plasma column at intermediate gas pressures. After proving that argon upper excited states remain in Excitation Saturation Balance, the value of electron temperature along the plasma column has been obtained using a modified Saha equation and a corrected Boltzmann-plot. Moreover, the electron energy distribution function has been verified to be nearly Maxwellian in a 0.8-2.8 torr intermediate pressure range. Received 24 July 2000 and Received in final form 19 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号