首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trans-bis(sodium pyridine-p-sulphonate)tetracarbonylmolybdenum(0) complex, (trans-Mo(CO)4(p-PySO3Na)2, (1)) was used as a catalytic precursor for the 1-hexene hydroformylation reaction, in biphasic toluene/water medium (T = 100°C, syngas total pressure = 600 psi, pH2/pCO = 1). Complex (1) showed good activity favoring the linear aldehyde. Likewise as other organic olefin substrates and with synthetic and real naphtha, good conversions to oxygenated products were obtained.  相似文献   

2.
Reaction of C5H4(SiMe3)2 with Mo(CO)6 yielded [(η5-C5H3(SiMe3)2)Mo(CO)3]2, which on addition of iodine gave [(η5-C5H3(SiMe3)2Mo(CO)3I]. Carbonyl displacement by a range of ligands: [L  P(OMe)3, P(OPri)3,P(O-o-tol)3, PMe3, PMe2Ph, PMePh2, PPh3, P(m-tol)3] gave the new complexes [(η5-C5H3(SiMe3)2 MO(CO)2(L)I]. For all the trans isomer was the dominant, if not exclusive, isomer formed in the reaction. An NOE spectral analysis of [(η5-C5H3(SiMe3)2)Mo(CO)2(L)I] L  PMe2Ph, P(OMe)3] revealed that the L group resided on the sterically uncongested side of the cyclopentadienyl ligand and that the ligand did not access the congested side of the molecule. Quantification of this phenomenon [L  P(OMe)3] was achieved by means of the vertex angle of overlap methodology. This methodology revealed a steric preference with the trans isomer (less congestion of CO than I with an SiMe3 group) being the more stable isomer for L  P(OMe)3.  相似文献   

3.
The nature of the protonation reaction of (
o(CO)3 (M = Mo, W; R = Me, Ph, p-MeC6H4) (2) (obtained from (CO)3CpMCH2CCR (1) and Co2(CO)8) to give (CO)3 Cp(CO)2 (3) was further investigated by a crossover experiment. Thus, reaction of an equimolar mixture of 2b (M = W, Cp = η5-C5H5, R = Ph) and 2e (M = W, Cp = η5-C5H4Me; R = p-MeC6H4) with CF3COOH affords only 3b (same M, Cp, and R as 2b) and 3e (same M, Cp, and R as 2e) to show an intramolecular nature of this transformation. Reaction of (CO)3CpWCH2CCPh (1b) with Co4(CO)12 was also examined and found to yield 2b exclusively. Treatment of 1 with Cp2Mo2(CO)4 at 0–5°C provides thermally sensitive compounds, possibly (CO)2Cp
oCp(CO)2 (5), which decompose at room temperature to give Cp2Mo2(CO)6 as the only isolated product.  相似文献   

4.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

5.
An XRD analysis is used to study the single crystal of [Pd(NH3)4][Rh(NH3)(NO2)5] double complex salt at T = 150(2) K. Crystallographic characteristics are as follows: a = 7.6458(5) ?, b = 9.8813(6) ?, c = 9.5788(7) ?, β = 109.469(2)°, V = 682.30(8) ?3, P21/m space group, Z = 2, d x = 2.553 g/cm3. The geometry of the complex [Rh(NH3)(NO2)5]2− anion is described for the first time: Rh-N(NO2) distances are 2.020(4)–2.060(3) ?, Rh-N(NH3) 2.074(4) ?, N(NO2)-Rh-N(NH3) trans-angle is 178.8(2)°.  相似文献   

6.
The compound [Re2(CO)8(MeCN)2] reacts with diazoindene (C9H6N2) while refluxing in THF to afford three dirhenium products in which C9H6N2 is cleaved with loss of N2 and with incorporation of the residual indenylidene group into the products. Two indenylidene groups are coupled in two diastereomers of [Re2(CO)6(μ,η55-1,1′-C18H12)] where C18H12=bis(indenylidene). X-ray structures show that these isomers are related as RR/SS and RS isomers. These have the two Re(CO)3 groups coordinated transoid and cisoid, respectively to a trans bis(indenylidene) bridge. The third product is the μ-indenylidene complex [Re2(CO)8(μ,η15-C9H6)], which was also structurally characterised by X-ray diffraction.  相似文献   

7.
The reaction between η5-C5H5M(CO)3I (M  Mo, W) and isonitriles, RNC, (RNC  PhCH2NC, t-BuNC and 2,6-dimethylphenylisocyanide (XyNC)) is catalysed by the dimer [η5-C5H5M(CO)3]2 (M = Mo, W) to yield η5-C5H5M(CO)3?n(RNC)nI (n = 1–3) and [η5-C5H5Mo(RNC)4]I. The complexes (η5-C5H5)2Mo2(CO)6?n(RNC)n (n = 1, RNC = MeNC, PhCH2NC, XyNC, t-BuNC; n = 2, RNC = t-BuNC) have been prepared in moderate yield from the direct reaction between [η5-C5H5Mo(CO)3]2 and RNC, and also catalyse the above reaction. A reaction pathway involving a fast non-chain radical mechanism and a slower chain radical mechanism is proposed to account for the catalysed reaction.  相似文献   

8.
The preparation and properties of the complexes [M(π-C5H5){HC(NR)2}CO)2] (M = Mo, W; R = aryl or alkyl) are reported. The complex [Mo(π-C5H5){HC(N-p-tolyl)2}(CO)2] could be prepared by (a) reaction of MoCp(CO)3Cl with M′{HC(N-p-tolyl)2} (M′ = K, Ag or Cu); (b) irradiation of MoCp(CO)3Cl with HC(HN-p-tolyl)N-p-tolyl); and (c) reaction of [MoCp(CO)3]2 with M′{HC(N-p-tolyl)2} (M′ = Ag or Cu). The several routes to this complex give indications of the mechanisms of formation. The structure of these complexes and the bonding nature of the metal with the formamidino group is discussed on basis of the 1H and 13C NMR and IR spectra.Reaction of N,N′-dimethyl formamidine with MCp(CO)3Cl gave the complex [M(π-C5H5){HC(NMe)N(CO)Me}(CO)2], containing a carbonyl inserted between the metal and the formamidino group. Irradiation of this carbamoyl complex caused decarbonylation, yielding the complex [M(π-C5H5){HC(NMe)2}CO)2].  相似文献   

9.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

10.
Syntheses of the complexes trans-[PtCl2(PR3)Mo2(CO)45-C5H5)2(tBuCP)], (PR3=PEt3, PPr3, PBu3, PPh2Me, PPhMe2) trans-[PdCl2(PBu3)Mo2(CO)45-C5H5)2(tBuCP)], and trans[RhCl{(PF2NMe)2CO}Mo2(CO)45-C5H5)2(tBuCP)] are described and their 31P NMR spectra presented and discussed.  相似文献   

11.
The iridium and rhodium complexes [MCl(CO)2(NH2C6H4Me-4)] (M = Ir or Rh) react with [Os3(μ-H)2(CO)10] to give the tetranuclear clusters [MOs3(μ-H)2(μ-Cl)(CO)12]; the iridium compound being structurally identified by X-ray diffraction. Similarly, [IrCl(CO)2(NH2C6H4Me-4)] and [Rh2(μ-CO)2(η-C5Me5)2] afford the tetranuclear cluster [Ir2Rh2(μ-CO)(μ3-CO)2(CO)4(η-C5Me5)2], also characterised by single-crystal X-ray crystallog  相似文献   

12.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

13.
The reactions of [Fe3(CO)12] or [Ru3(CO)12] with RNC (R=Ph, C6H4OMe-p or CH2SO2C6H4Me-p) have been investigated using electrospray mass spectrometry. Species arising from substitution of up to six ligands were detected for [Fe3(CO)12], but the higher-substituted compounds were too unstable to be isolated. The crystal structure of [Fe3(CO)10(CNPh)2] was determined at 150 and 298 K to show that both isonitrile ligands were trans to each other on the same Fe atom. For [Ru3(CO)12] substitution of up to three COs was found, together with the formation of higher-nuclearity clusters. [Ru4(CO)11(CNPh)3] was structurally characterised and has a spiked-triangular Ru4 core with two of the CNPh ligands coordinated in an unusual μ32 mode.  相似文献   

14.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2- anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(Ⅱ) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

15.
The synthesis and properties of heterobimetallic Ti-M complexes of type {[[Ti](μ-η12-CCSiMe3)][M(μ-η12-CCSiMe3)(CO)4]} (M = Mo: 5, [Ti] = (η5-C5H5)2Ti; 6, [Ti] = (η5-C5H4SiMe3)2Ti; M = W: 7, [Ti] = (η5-C5H5)2Ti; 8, [Ti] = (η5-C5H4SiMe3)2Ti) and {[Ti](μ-η12-CCSiMe3)2}MO2 (M = Mo: 13, [Ti] = (η5-C5H5)2Ti; 14, [Ti] = (η5-C5H4SiMe3)2Ti). M = W: 15, [Ti] = (η5-C5H5)2Ti; 16, [Ti] = (η5-C5H4SiMe3)2Ti) are reported. Compounds 5-8 were accessible by treatment of [Ti](CCSiMe3)2 (1, [Ti] = (η5-C5H5)2Ti; 2, [Ti] = (η5-C5H4SiMe3)2Ti) with [M(CO)5(thf)] (3, M = Mo; 4, M = W) or [M(CO)4(nbd)] (9, M = Mo; 10, M = W; nbd = bicyclo[2.2.1]hepta-2,5-diene), while 13-16 could be obtained either by the subsequent reaction of 1 and 2 with [M(CO)3(MeCN)3] (11, M = Mo; 12, M = W) and oxygen, or directly by oxidation of 5-8 with air. A mechanism for the formation of 5-8 is postulated based on the in-situ generation of [Ti](CCSiMe3)((η2-CCSiMe3)M(CO)5), {[Ti](μ-η12-CCSiMe3)2}-M(CO)4, and [Ti](μ-η12-CCSiMe3)((μ-CCSiMe3)M(CO)4) as a result of the chelating effect exerted by the bis(alkynyl) titanocene fragment and the steric constraints imposed by the M(CO)4 entity.The molecular structure of 5 in the solid state were determined by single crystal X-ray diffraction analysis. In doubly alkynyl-bridged 5 the alkynides are bridging the metals Ti and Mo as a σ-donor to one metal and as a π-donor to the other with the [Ti](CCSiMe3)2Mo core being planar.  相似文献   

16.
The reaction betweeen (η5-C5H5Mo(CO)3I and RNC is catalysed by [η5 -C5H5Mo(CO)3]2 and readily yields η5-C5H5Mo(CO)3−n(RNC)nI (n = 1–3). A free radical mechanism is consistent with experimental data.  相似文献   

17.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

18.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

19.
通过简便的蒸发方法得到了 2种碱金属磺酸盐非线性光学(NLO)晶体, 即 Li(NH2SO3)和 Na(NH2SO3)。Li(NH2SO3)以极性空间群Pca21(编号 29)结晶。Li(NH2SO3)的结构可以描述为由[LiO4]7-多面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。Na(NH2SO3)以极性空间群 P212121(编号 19)结晶。Na(NH2SO3)的结构可以描述为由扭曲的[NaO6]11-八面体通过共角连接与 NH2SO3-四面体相互连接而形成的三维网络。紫外可见近红外光谱表明, Li(NH2SO3)和 Na(NH2SO3)分别具有 5.25 和 4.81 eV 的大光学带隙。粉末二次谐波发生(SHG)测量显示, Li(NH2SO3)和 Na(NH2SO3)的 SHG 强度分别为 KH2PO4的 0.32 倍和 0.31倍。第一原理计算证实, 非线性光学性能主要来自氨基磺酸阴离子和碱金属氧阴离子多面体的协同作用。  相似文献   

20.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号