首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The first example of the formation of hydrogen-deficient radical cations of the type [M + H](.2+) is demonstrated to occur through a one-electron-transfer mechanism upon low-energy collision-induced dissociation (CID) of gas-phase triply charged [Cu(II)(terpy)(M + H)](.3+) complex ions (where M is an angiotensin III or enkephalin derivative; terpy = 2,2':6',2'-terpyridine). The collision-induced dissociation of doubly charged [M + H](.2+) radical cations generates similar product ions to those prepared through hot electron capture dissociation (HECD). Isomeric isoleucine and leucine residues were distinguished by observing the mass differences between [z(n) + H](.+) and w(n)(+) ions (having the same residue number, n) of the Xle residues. The product ion spectrum of [z(n) + H](.+) reveals that the w(n)(+) ions are formed possibly from consecutive fragmentations of [z(n) + H](.+) ions. Although only the first few [M + H](.2+) species have been observed using this approach, these hydrogen-deficient radical cations produce fragment ions that have more structure-informative patterns and are very different from those formed during the low-energy tandem mass spectrometry of protonated peptides.  相似文献   

2.
Multiple lithium exchange is observed during electrospray ionization of alpha-, beta- and gamma-cyclodextrins from aqueous methanolic solution containing LiOH. Apart from [M + Li](+) and [M + nLi - (n - 1)H](+) ions, abundant multiply lithiated doubly charged ions corresponding to [M + nLi - (n - 2)H](2+) ions were observed. At least six lithium exchanges in alpha-cyclodextrin, seven in beta-cyclodextrin and eight in gamma-cyclodextrin were noted. The propensity of multiply lithiated doubly charged ions is much less in the open-ended maltoheptaose. It appears that during droplet or cluster formation and subsequent desolvation, LiOH trapped in the cavity of cyclodextrin reacts to form multiply lithiated ions. The singly charged [M + Li](+) and doubly charged [M + 2Li](2+) ions fragment by glycosidic cleavages, giving B series of ions, whereas the multiply lithiated ions fragment by cross ring cleavages ((2, 4)A or (O, 2)X) followed by glycosidic cleavage. From the tandem mass spectra, it appears that a maximum of two lithium exchanges occur in one sugar unit in these cyclodextrins.  相似文献   

3.
Electron capture dissociation (ECD) studies of two modified amyloid beta peptides (20-29 and 25-35) were performed to investigate the role of H* radicals in the ECD of peptide ions and the free-radical cascade (FRC) mechanism. 2,4,6-Trimethylpyridinium (TMP) was used as the fixed charge tag, which is postulated to both trap the originally formed radical upon electron capture and inhibit the H* generation. It was found that both the number and locations of the fixed charge groups influenced the backbone and side-chain cleavages of these peptides in ECD. In general, the frequency and extent of backbone cleavages decreased and those of side-chain cleavages increased with the addition of fixed charge tags. A singly labeled peptide with the tag group farther away from the protonated site experienced a smaller abundance decrease in backbone cleavage fragments than the one with the tag group closer to the protonated site. Despite the nonprotonated nature of all charge carriers in doubly labeled peptide ions, several c and z* ions were still observed in their ECD spectra. Thus, although H* transfer may be important for the NC(alpha) bond cleavage, there also exist other pathways, which would require a radical migration via H* abstraction through space or via an amide superbase mechanism. Finally, internal fragment ions were observed in the ECD of these linear peptides, indicating that the important role of the FRC in backbone cleavages is not limited to the ECD of cyclic peptides.  相似文献   

4.
Electron capture by doubly charged peptide cations leads to neutral losses in addition to N-C(α) bond cleavages that give c and z fragments. In this work we discuss the influence of amino acid sequence on hydrogen versus ammonia loss and the propensity for subsequent partial side-chain cleavage after ammonia loss to give w fragment ions. Experiments were done on two series of doubly protonated dipeptides, [XK+2H](2+) and [XR+2H](2+), where X is one of the twenty common amino acid residues, excluding aspartic acid (D), and K and R are lysine and arginine, respectively. While it was previously established that NH(3) is lost exclusively from the N-terminal ammonium group and not from side-chain ammonium groups, we find here that ammonia can be lost from guanidinium radicals as well. The ratio between H loss and NH(3) loss reveals some information on internal ionic hydrogen bonds and peptide conformation since proton sharing between the N-terminal ammonium group and a basic side chain decreases the probability for NH(3) loss due to a lower recombination energy and as a result reduced capture probability. The abundance of w ions was found to correlate with the reaction energy for their formation; highest yield was found for CK and lowest for AK and HK. The survival rate of charge-reduced species was higher for XR than for XK, which is likely linked to the formation of long-lived C(α) radicals in the latter case. The probability for N-C(α) bond cleavage is smaller on average for XR than for XK which indicates that hydrogen transfer from the ε-ammonium radical to the amide group triggers some of the cleavages, or is a result of the different distances between the amide group and the charges in XR and XK. Finally, our data support the previous concept that charge partitioning between c and z fragments can be explained by competition between the two fragments for the proton.  相似文献   

5.
N-Linked glycans were derivatised by reductive amination using N-(2-diethylamino)ethyl-4-aminobenzamide (DEAEAB, procainamide) and examined by electrospray mass spectrometry. This derivative ionised primarily by protonation of the tertiary amine group and attachment of an alkali metal to give [M + H + X](2+) ions which were much more abundant that doubly charged ions from glycans derivatised with other aromatic amines. Fragmentation of these ions depended on the nature of the alkali metal (X). Lithium and sodium adducts fragmented to give prominent ions produced by cleavages within the DEAEAB derivative whereas the other adducts produced more abundant ions from fragmentation of the carbohydrate. Elimination of a sugar fragment, usually by cleavage adjacent to GlcNAc or sialic acid, together with a hydrogen atom, produced the most abundant singly charged fragment ions. These ions then formally fragmented by glycosidic cleavages. Potassium, rubidium and caesium adducts produced abundant losses of the alkali metal, but the resulting ions appeared not to undergo extensive fragmentation. Most fragment ions from all of the adducts were singly charged, the remainder being doubly charged. Although the spectra of the [M + X + H](2+) ions were not as informative as those from the singly charged ions from other derivatives, they, nevertheless, provided much valuable information on the structure of these glycans.  相似文献   

6.
Derivatives were prepared from N-linked glycans by reductive amination from 2-aminobenzamide, 2-aminopyridine, 3-aminoquinoline, 2-aminoacridone, 4-amino-N-(2-diethylaminoethyl)benzamide, and the methyl, ethyl, and butyl esters of 4-aminobenzoic acid. Their electrospray and collision-induced dissociation (CID) fragmentation spectra were examined with a Q-TOF mass spectrometer. The strongest signals were obtained from the [M + Na]+ ions for all derivatives except sugars derivatized with 4-amino-N-(2-diethylaminoethyl)benzamide which gave very strong doubly charged [M + H + Na]2+ ions. The strongest [M + Na]+ ion signals were obtained from the butyl ester of 4-aminobenzoic acid and the weakest from 2-aminopyridine. The most informative spectra were recorded from the [M + Li]+ or [M + Na]+ ions. These spectra were dominated by ions produced by sequence-revealing glycosidic cleavages and "internal" fragments. Linkage-revealing cross-ring cleavage ions were reasonably abundant, particularly from high-mannose glycans. Although the nature of the derivative was found to have little effect upon the fragmentation pattern, 3-aminoquinoline derivatives gave marginally more abundant cross-ring fragments than the other derivatives. [M + H]+ ions formed only glycosidic fragments with few, if any, cross-ring cleavage ions. Doubly charged molecular ions gave less informative spectra; singly charged fragments were weak, and molecular ions containing hydrogen ([M + 2H]2+ and [M + H + Na]2+) fragmented as the [M + H]+ singly charged ions with no significant cross-ring cleavages.  相似文献   

7.
Electron capture dissociation (ECD) of the peptide Substance P (SubP) complexed with divalent metals has been investigated. ECD of [SubP + H + M]3+ (M2+ = Mg2+ -Ba2+ and Mn2+ -Zn2+) allowed observation of a larger number of product ions than previous investigations of doubly charged metal-containing peptides. ECD of Mg-Ba, Mn, Fe, and Zn-containing complexes resulted in product ions with and without the metal from cleavage of backbone amine bonds (c' and z* -type ions). By contrast, ECD of Co and Ni-containing complexes yielded major bond cleavages within the C-terminal methionine residue (likely to be the metal ion binding site). Cu-containing complexes displayed yet another behavior: amide bond cleavage (b and y'-type ions). We believe some results can be rationalized both within the hot hydrogen atom mechanism and mechanisms involving electron capture into excited states, such as the recently proposed amide superbase mechanism. However, some behavior, including formation of (cn 'M - H)+ ions for Ca-Ba, is best explained within the latter mechanisms with initial electron capture at the metal. In addition, the ECD behavior appears to correlate with the metal second ionization energy (IE2). Co and Ni (displaying sequestered fragmentation) have IE2s of 17.1 and 18.2 eV, respectively, whereas IE2s for Mg-Ba, Mn, and Fe (yielding random cleavage) are 10.0 to 16.2 eV. This behavior is difficult to explain within the hot hydrogen atom mechanism because hydrogen transfer should not be influenced by IE2s. However, the drastically different fragmentation patterns for Co, Ni, and Cu compared to the other metals can also be explained by their higher propensity for nitrogen (as opposed to oxygen) binding. Nevertheless, these results imply that directed fragmentation can be accomplished via careful selection of the cationizing agent.  相似文献   

8.
Hydrogen-deficient peptide radical cations exhibit fascinating gas phase chemistry, which is governed by radical driven dissociation and, in many cases, by a combination of radical and charge driven fragmentation. Here we examine electron capture dissociation (ECD) of doubly, [M + H]2+?, and triply, [M + 2H]3+?, charged hydrogen-deficient species, aiming to investigate the effect of a hydrogen-deficient radical site on the ECD outcome and characterize the dissociation pathways of hydrogen-deficient species in ECD. ECD of [M + H]2+? and [M + 2H]3+? precursor ions resulted in efficient electron capture by the hydrogen-deficient species. However, the intensities of c- and z-type product ions were reduced, compared with those observed for the even electron species, indicating suppression of N?CC?? backbone bond cleavages. We postulate that radical recombination occurs after the initial electron capture event leading to a stable even electron intermediate, which does not trigger N?CC?? bond dissociations. Although the intensities of c- and z-type product ions were reduced, the number of backbone bond cleavages remained largely unaffected between the ECD spectra of the even electron and hydrogen-deficient species. We hypothesize that a small ion population exist as a biradical, which can trigger N?CC?? bond cleavages. Alternatively, radical recombination and N?CC?? bond cleavages can be in competition, with radical recombination being the dominant pathway and N?CC?? cleavages occurring to a lesser degree. Formation of b- and y-type ions observed for two of the hydrogen-deficient peptides examined is also discussed.  相似文献   

9.
As a means of generating fixed-charge peptide radicals in the gas phase we have examined the collision-induced dissociation (CID) chemistry of ternary [Cu(II)(terpy)(TMPP-M)]2+ complexes, where terpy = 2,2':6'2'-terpyridine and TMPP-M represents a peptide (M) modified by conversion of the N-terminal amine to a [tris(2,4,6-trimethoxyphenyl)phosphonium]acetamide (TMPP-) fixed-charge derivative. The following modified peptides were examined: oligoglycines, (Gly)n (n = 1-5), alanylglycine, glycylalanine, dialanine, trialanine and leucine-enkephaline (YGGFL). The [Cu(II)(terpy)(TMPP-M)]2+ complexes are readily formed upon electrospray ionization (ESI) of a mixture of derivatized peptide and [Cu(II)(terpy)(NO3)2] and generally fragment to form transient peptide radical cations, TMPP-M+*, which undergo rapid decarboxylation for the simple aliphatic peptides. This is contrasted with the complexes containing the unmodified peptides, which predominantly undergo fragmentation of the coordinated peptide. These differences demonstrate the importance of proton mobility in directing fragmentation of ternary copper(II) peptide complexes. In the case of leucine-enkephaline, a sufficient yield of the radical cation was obtained to allow further CID. The TMPP-YGGFL+* ion showed a rich fragmentation chemistry, including CO2 loss, side-chain losses of an isopropyl radical, 2-methylpropene and p-quinomethide, and *a1 and *a4 sequence ion formation. In contrast, the even-electron TMPP-YGGFL+ ion fragments to form *a(n) and *b(n) sequence ions as well as the [*b4 + H2O]+ rearrangement ion.  相似文献   

10.
Porphyrin derivatives having a galactose or a bis(isopropylidene)galactose structural unit, linked by ester or ether bonds, were characterized by electrospray tandem mass spectrometry (ES-MS/MS). The electrospray mass spectra of these glycoporphyrins show the corresponding [M + H](+) ions. For the glycoporphyrins with pyridyl substituents and those having a tetrafluorophenyl spacer, the doubly charged ions [M + 2H](2+) were also observed in ES-MS with high relative abundance. The fragmentation of both [M + H](+) and [M + 2H](2+) ions exhibited common fragmentation pathways for porphyrins with the same sugar residue, independently of the porphyrin structural unit and type of linkage. ES-MS/MS of the [M + H](+) ions of the galactose-substituted porphyrins gave the fragment ions [M + H - C(2)H(4)O(2)](+), [M + H - C(3)H(6)O(3)](+), [M + H - C(4)H(8)O(4)](+) and [M + H - galactose residue](+). The fragmentation of the [M + 2H](2+) ions of the porphyrins with galactose shows the common doubly charged fragment ions [porphyrin + H](2+), [M + 2H - C(2)H(4)O(2)](2+), [M + 2H - C(4)H(8)O(4)](2+), [M + 2H - galactose residue](2+) and the singly charged fragment ions [M + H - C(3)H(6)O(3)](+) and [M + H - galactose residue](+). The fragmentation of the [M + H](+) ions of glycoporphyrins with a protected galactosyl residue leads mainly to the ions [M + H - CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2)](+), [M + H - 2CO(CH(3))(2) - CO](+), [M + H - C(10)H(16)O(4)](+) and [M + H - protected galactose](+). The doubly charged ions [M + 2H](2+) fragment to give the doubly charged ions [porphyrin + H](2+) and the singly charged ions [M + H - protected galactose residue](+) and [M + H - CO(CH(3))(2)](+). For the porphyrins where the sugar structural unit is linked by an ester bond, [M + 2H](2+), ES-MS/MS showed a major and typical fragmentation corresponding to combined loss of a sugar structural unit and further loss of water, leading to the ion [M + 2H - sugar residue - H(2)O](2+), independently of the structure of the sugar structural unit. These results show that ES-MS/MS can be a powerful tool for the characterization of the sugar structural unit of glycoporphyrins, without the need for chemical hydrolysis.  相似文献   

11.
For small cyclic peptides, one electron capture by the [M + 2H](2+) ion generates numerous fragments corresponding to amino acid losses, side-chain losses, and losses of some low molecular weight species such as H(2)O, CH(3)(*), C(3)H(6), and (*)CONH(2). As predicted, the side-chain cleavages are amplified relative to linear peptides of similar size, but the amino acid losses were unexpected because they require that one electron capture cause more than one backbone cleavage, a phenomenon which necessitates further refinement or reinterpretation of current ECD mechanisms. A modified mechanism is postulated in which nonergodic electron capture fragmentation generates an alpha-carbon radical species that then propagates along the protein backbone. This radical migration initiates multiple free radical rearrangements, which cause both multiple backbone cleavages and additional side-chain cleavages.  相似文献   

12.
Pyridiniummethylcarbonyl moieties that were previously designed on the basis of electronic structure analysis are now utilized as fixed-charge tags with tunable electronic properties to be used for N-terminal peptide derivatization and sequencing by electron-transfer dissociation. Dipeptides AK and KA were derivatized at the peptide N-terminus with 4-dimethylaminopyridinium-N-acetyl (DMAP-ac) and pyridinium-N-acetyl (pyrid-ac) tags of increasing intrinsic recombination energies. Upon the capture of a free electron or electron transfer from fluoranthene anions, (DMAP-ac-AK+H)2+, (DMAP-ac-KA+H)2+, (pyrid-ac-AK+H)2+ and (pyrid-ac-KA+H)2+ ions, as well as underivatized (AK+2H)2+, completely dissociated. The fixed-charge tags steered the dissociation upon electron transfer to form abundant backbone N–Cα bond cleavages, whereas the underivatized peptide mainly underwent H-atom and side-chain losses. Precursor ion structures for the tagged peptides were analyzed by an exhaustive conformational search combined with B3LYP/6-31+G(d,p) geometry optimization and single-point energy calculations in order to select the global energy minima. Structures, relative energies, transition states, ion–molecule complexes, and dissociation products were identified for several charge-reduced species from the tagged peptides. The electronic properties of the charge tags and their interactions with the peptide moieties are discussed. Electrospray ionization and electron-transfer dissociation of larger peptides are illustrated with a DMAP-tagged pentapeptide.  相似文献   

13.
Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using the c + 57 or z − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak, [M-60], for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues.  相似文献   

14.
The presence of disulfide linkages in multiply charged polypeptide ions tends to inhibit the formation of structurally informative product ions under conventional quadrupole ion trap collisional activation conditions. In particular, fragmentation that requires two cleavages (i.e., cleavage of a disulfide linkage and a peptide linkage) is strongly suppressed. Reduction of the disulfide linkage(s) by use of dithiothreitol yields parent ions upon electrospray without this complication. Far richer structural information is revealed by ion trap collisional activation of the disulfide-reduced species than from the native species. These observations are illustrated with doubly protonated native and reduced somatosin, the [M + 5H](5+) ion of native bovine insulin and the [M + 4H](4+) and [M + 3H](3+) ions of the B-chain of bovine insulin produced by reduction of the disulfide linkages in insulin, and the [M + 11H](11+) ion of native chicken lysozyme and the [M + 11H](11+) and [M + 14H](14+) ions of reduced lysozyme. In each case, the product ions produced by ion trap collisional activation were subjected to ion/ion proton transfer reactions to facilitate interpretation of the product ion spectra. These studies clearly suggest that the identification of polypeptides with one or more disulfide linkages via application of ion trap collisional activation to the multiply charged parent ions formed directly by electrospray could be problematic. Means for cleaving the disulfide linkage, such as reduction by dithiothreitol prior to electrospray, are therefore desirable in these cases.  相似文献   

15.
We have used electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry to characterize amino acid side chain losses observed during electron capture dissociation (ECD) of ten 7- to 14-mer peptides. Side-chain cleavages were observed for arginine, histidine, asparagine or glutamine, methionine, and lysine residues. All peptides containing an arginine, histidine, asparagine or glutamine showed the losses associated with that residue. Methionine side-chain loss was observed for doubly-protonated bombesin. Lysine side-chain loss was observed for triply-protonated dynorphin A fragment 1-13 but not for the doubly-protonated ion. The proximity of arginine to a methoxy C-terminal group significantly enhances the extent of side-chain fragmentation. Fragment ions associated with side-chain losses were comparable in abundance to those resulting from backbone cleavage in all cases. In the ECD spectrum of one peptide, the major product was due to fragmentation within an arginine side chain. Our results suggest that cleavages within side chains should be taken into account in analysis of ECD mass spectral data. Losses from arginine, histidine, and asparigine/glutamine can be used to ascertain their presence, as in the analysis of unknown peptides, particularly those with non-linear structures.  相似文献   

16.
Series of doubly and triply protonated diarginated peptide molecules with different number of glutamic acid (E) and asparagine (N) residues were analyzed under ECD conditions. ECD spectra of doubly-protonated peptides show a strong dependence on the number of E and N residues. Both the backbone cleavages and hydrogen radical (H) loss from the charge-reduced precursor ions ([M+2H]+•) were suppressed as the number of E and N residues increases. A strong inhibition of the backbone cleavages and H loss from [M+2H]+• was found for peptides with 6E residues (or 4E + 2N residues). The results obtained using these model peptides were re-confirmed by analyzing N-arginated Fibrinopeptide-B (i.e., REGVNDNEEGFFSAR). In contrast to the N-arginated peptide, ECD of the doubly-protonated Fibrinopeptide-B and its analogues show extensive backbone cleavages leading to series of c- and z-ions (∼80% sequence coverage). Based on these results, it is believed that peptide ions with all surplus protons sequestered in arginine-residues would show enhanced stability under ECD conditions as the number of acid-residue increases. The suppression of backbone cleavages and H loss from [M+2H]+• are presumably attributed to the low reactivity of the charge-reduced precursor ions. One of the possible hypothesis is that diarginated E-rich peptides may contain hydrogen bonds between carbonyl oxygen of E side chains and backbone amide hydrogen. These hydrogen bonds would provide extra stabilization for [M+2H]+•. This is the first demonstration of natural structural motifs in peptides that would inhibit the backbone fragmentation of the charge-reduced peptide ions under ECD conditions.  相似文献   

17.
Tripeptides form ternary complexes with Cu(2+) and 2,2'-bipyridine (bpy) that self-assemble upon mixing the components in aqueous methanol solution. Electrospray ionization (ESI) of the complex solutions provides abundant singly charged [Cu(peptide -- H)bpy](+) and doubly charged [Cu(peptide)bpy](2+) ions. Collision-induced dissociation (CID) at low ion kinetic energies of several tripeptides, AGG, GGA, LGG, GGL, GGI, FGG, GGF, LGF, GLF, GFL, GYA and GAY, showed fragments that were indicative of the amino acid sequence in the peptide. In addition, CID of single and doubly charged complexes of isomeric tripeptides GGL and GGI provided unambiguous distinction of the isomeric leucine and isoleucine residues. Leucine peptides eliminated C(3)H(7) radicals from the amino acid side-chain whereas isoleucine eliminated C(2)H(5) radicals. CID of gas-phase doubly charged peptide complexes in a quadrupole ion trap produced a series of singly charged sequence fragments that following isolation and further CID furnished distinct fragments that allowed quantitation of leucine and isoleucine-containing peptides in mixtures.  相似文献   

18.
Electrospray ionization in combination with tandem mass spectrometry and lead cationization is used to characterize the linkage position of underivatized disaccharides. Lead(II) ions react mainly with disaccharides by proton abstraction to generate [Pb(disaccharide)(m)-H](+) ions (m = 1-2). At low cone voltages, an intense series of doubly charged ions of general formula [Pb(disaccharide)(n)](2+) are also observed. Our study shows that MS/MS experiments have to be performed to differentiate Pb(2+)-coordinated disaccharides. Upon collision, [Pb(disaccharide)-H](+) species mainly dissociate according to glycosidic bond cleavage and cross-ring cleavages, leading to the elimination of C(n)H(2n)O(n) neutrals (n = 2-4). The various fragmentation processes allow the position of the glycosidic bond to be unambiguously located. Distinction between glc-glc and glc-fru disaccharides also appears straightforward. Furthermore, for homodimers of D-glucose our data demonstrate that the anomericity of the glycosidic bond can be characterized for the 1 --> n linkages (n = 2, 4, 6). Consequently, Pb(2+) cationization combined with tandem mass spectrometry appears particularly useful to identify underivatized disaccharides.  相似文献   

19.
Maltoheptaose and several N-linked glycans were ionized by electrospray as adducts with the divalent cations Mg2+, Ca2+, Mn2+, Co2+ and Cu2+. [M + metal]2+ ions were the major species in all cases with calcium giving the highest sensitivity. In addition, copper gave [M + Cu]+ ions. Other cations gave singly charged ions only by elimination of a protonated monosaccharide. Fragmentation of the [M + metal]2+ ions produced both singly and doubly charged ions with the relative abundance of doubly charged ions decreasing in the order Ca > Mg > Mn > Co > Cu. Singly charged ions were formed by elimination of a protonated monosaccharide residue followed, either by successive monosaccharide residue losses, or by a 2,4A cross-ring cleavage of the reducing-terminal monosaccharide. Formation of doubly charged fragments from [M + metal]2+ ions involved successive monosaccharide-residue losses either with or without O,2A or 2,4A cross-ring cleavages of the reducing-terminal monosaccharide. Abundant diagnostic doubly charged ions formed by loss of the 3-antenna from the O,2A cross-ring product were specific to [M + Ca]2+ ions. Fragmentation of [M + Cu]+ ions was similar to that of the corresponding [M + H]+ ions in that most cross-ring fragments were absent.  相似文献   

20.
A time-of-flight mass spectrometer with a position sensitive ion detector was used to study the dissociative double ionization of benzene by UV synchrotron radiation. The threshold energy for the main dissociative processes, leading to CH(3)(+) + C(5)H(3)(+), C(2)H(3)(+) + C(4)H(3)(+) and C(2)H(2)(+) + C(4)H(4)(+) ion pairs were characterized by exploiting a photoelectron-photoion-photoion-coincidence technique, giving 27.8 ± 0.1, 29.5 ± 0.1, and 30.2 ± 0.1 eV, respectively. The first reaction also proceeds via the formation of a metastable C(6)H(6)(2+) dication. The translational kinetic energy of the ionic products was evaluated by measuring the position of ions arriving to the detector. Theoretical calculations of the energy and structure of dissociation product ions were performed to provide further information on the dynamics of the charge separation reactions following the photoionization event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号