首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nanostructured LiCoO2 fibers were prepared by the sol-gel related electrospinning technique using metal acetate and citric acid as starting materials. The transformation from the xerogel fibers to the LiCoO2 fibers and the nanostructure of LiCoO2 fibers have been investigated in detail. The LiCoO2 fibers with 500 nm to 2 mum in diameter were composed of polycrystalline nanoparticles in sizes of 20-35 nm. Cyclic voltammetry and charge-discharge experiments were applied to characterize the electrochemical properties of the fibers as cathode materials for lithium-ion batteries. The cyclic voltammogram curves indicated faster diffusion and migration of Li+ cations in the nanostructured LiCoO2 fiber electrode. In the first charge-discharge process, the LiCoO2 fibers showed the initial charge and discharge capacities of 216 and 182 (mA.h)/g, respectively. After the 20th cycle, the discharge capacity decreased to 123 (mA.h)/g. The X-ray diffraction and high-resolution transmission electron microscopy analyses indicated that the large loss of capacity of fiber electrode during the charge-discharge process might mainly result from the dissolution of cobalt and lithium cations escaping from LiCoO2 to form the crystalline Li2CO3 and CoF2 impurities.  相似文献   

2.
Lithium cobalt oxide (LiCoO(2)) particles are modified using rotor blade grinding and re-annealing and used as the active electrode material versus lithium in the 3-0 V potential interval, in which a maximum capacity of 903 mA h g(-1) is achieved. X-ray absorption near edge structure spectra reveal the complete reduction of Co(3+) to Co metal at 0 V. Cell recharge leads to an incomplete reoxidation of cobalt. A maximum reversible capacity of 812 mA h g(-1) is obtained, although a poor capacity retention upon prolonged cycling may limit its application.  相似文献   

3.
Since 1991, LiCoO2 used as cathode material of lithium-ion rechargeable batteries has attracted much attention in the industry of portable power apparatus such as mobiles, laptops and camcorders, etc. However, the production technologies of LiCoO2 have always been possessed by the foreign corporations. Although a plenty of research work has been performed in domestics, it is almost impossible to surpass the technological rampart, which renders our state to subject to much foreign exchange consumption.Many preparation methods such as solid state reaction, sol-gel process and hydrothermal synthesis et al have been reported in the literature. Via our studies, it is found that in the process of LiCoO2 synthesis not only lithium sources but also cobalt sources can play an important part in the physical and electrochemical properties, and also have a remarkable influence on the properties of LiCoO2.But as for the different synthesis methods, the necessary cobalt source is different, and as for the same synthesis method, the LiCoO2 prepared with different cobalt sources has different electrochemical performance.So far, the detailed findings on the LiCoO2 cathode material synthesized with various cobalt sources have not been reported yet in the literature. In this paper, the following work has been carried out.The LiCoO2 cathode material was synthesized by liquid-phase soft-chemistry process and solid state reaction at higher temperature with different cobalt sources respectively, and characterized by XRD, BET, SEM, TEM, laser particle size distribution and electrochemical testing. Its properties were compared. The effects of different cobalt sources, aqueous ammonia and ethanol additives on the physical and electrochemical properties of LiCoO2 cathode materials were investigated. The results have demonstrated that the different cobalt sources, aqueous ammonia and ethanol additives have remarkable influences on the physical and electrochemical properties of LiCoO2 cathode material. When liquid-phase soft-chemistry process is used to synthesize LiCoO2 cathode material,most excellent cobalt source when high-temperature solid state reaction method is used to prepare LiCoO2 cathode materials. The optimal sintering temperature range is 800℃~820 ℃ when liquid-phase soft-chemistry process is used to synthesize LiCoO2 cathode materials. Liquid-phase soft-chemistry process is superior to high-temperature solid state reaction method when LiCoO2 cathode materials is prepared.  相似文献   

4.
王茹英  邱天  毛冲  杨文胜 《电化学》2012,(4):332-336
在恒定pH值下将层状钴铝双羟基复合金属氧化物(CoAl-LDH)均匀包覆在球状Ni(OH)2表面,与LiOH.H2O混合均匀后,经高温煅烧制得钴铝酸锂包覆镍酸锂0.08LiCo0.75Al0.25O2-0.92LiNiO2正极材料.电化学测试表明,0.08LiCo0.75Al0.25O2-0.92LiNiO2正极比容量高,具有良好的倍率性能和循环寿命,其0.1C放电比容量为211 mAh·g-1,0.5C放电比容量为195.6 mAh·g-1,3C放电比容量为161 mAh·g-1,0.5C 30周期循环后容量保持率为93.2%,明显优于LiNiO2和钴酸锂包覆镍酸锂0.08LiCoO2-0.92LiNiO2正极.  相似文献   

5.
The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC elec- trolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1-xCoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5.  相似文献   

6.
Russian Journal of Electrochemistry - An aqueous rechargeable lithium ion battery with metallic cadmium as the negative electrode, LiCoO2 nanoparticles as the positive electrode, and a neutral...  相似文献   

7.
LiCoO(2) concaved cuboctahedra with a size of about 1.0 μm were hydrothermally prepared from CoCO(3) and LiOH·H(2)O at 150 °C. Field-emitting scanning electron microscope (FESEM) images show that the cuboctahedra consisted of four hexagonal plates, with angles of 70.5° in neighboring plates. Electron diffraction (ED) patterns of the hexagonal plates show 1 0 0 diffraction of LiCoO(2) in rhombohedral phase and 2?2?0 diffraction in spinel phase, which means LiCoO(2) concaved cuboctahedra are comprised of two intergrown phases. The electrochemical performance of these concaved cuboctahedra of LiCoO(2) at a rate of 0.5 C demonstrated first run charge/discharge capacities of 155 and 141 mAh g(-1) and a stable discharge capacity of 114 mAh g(-1) after 100 cycles. After that, FESEM images show the LiCoO(2) concaved cuboctahedra have undergone no significant change. At a temperature of 120 °C and under the same conditions, only a small amount of LiCoO(2) concaved cuboctahedron appeared. As the temperature rose to 180 °C, flower-like LiCoO(2) microstructures with a size of about 1.0 μm were formed, constructed of irregular plates. The electrochemical performance of the products prepared at 120 °C and 180 °C indicates lower stability than that of LiCoO(2) concaved cuboctahedra.  相似文献   

8.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

9.
为了开发较高能量密度的超级电容器,我们通过简单的溶剂热反应合成了一种三维的钴基金属有机框架(MOF)化合物([KCo7(OH)3(ip)6(H2O)4]·12H2O,Co?ip;ip=间苯二甲酸根),并考察了其作为超级电容器电极材料的性能。Co?ip电极显示出高比电容、良好的循环稳定性和优良的倍率性能。在1 mol·L^-1 KOH溶液中,电流密度为1 A·g^-1时,其最大比电容为1660 F·g^-1。在电流密度为2 A·g^-1条件下,循环3000次后,其比电容的保持率为82.7%。优异的超级电容性能可归因于Co?ip具有纳米尺寸颗粒和三维的多孔结构。  相似文献   

10.
采用喷墨打印技术制备了LiCoO2薄膜电极. 用X射线衍射、扫描电镜(SEM)、循环伏安和恒电流充放电试验对薄膜电极进行结构表征和电化学性能测试. SEM结果表明, 所制备的薄膜电极表面粒子分布均匀, 厚度约为1.27 μm. 经过轻微热处理(450 ℃, 30 min)的薄膜LiCoO2电极呈现出稳定的充放电循环性能. 当以20 μA/cm2进行充放电时, 第50次循环容量保持率约为首次放电容量(81 mA·h/g)的87%, 10次循环后的充放电过程的充放电效率均接近100%.  相似文献   

11.
溶剂热法合成不同形貌的Co3O4及其电容特性   总被引:3,自引:0,他引:3  
采用溶剂热法以不同的钴盐在水-正丁醇体系中合成了不同形貌及尺寸的纳米Co3O4. 采用XRD和TEM对产物的物相和形貌进行表征. 结果表明, 通过改变反应体系中阴离子的种类, 可以控制产物Co3O4的形貌与晶粒尺寸. 通过循环伏安法、恒流充放电和交流阻抗法对Co3O4电极材料的电化学性能进行表征. 结果表明, Co3O4的形貌与晶粒尺寸对其电化学性能有显著影响. 在2 mol·L-1 KOH溶液中, 在-0.40 - 0.55 V (vs SCE)电位范围内, 由Co(NO3)2制备的球形Co3O4表现出更好的电容特性,单电极初始比容量达362.0 F·g-1, 经过400 次循环后比容量仍保持90%.  相似文献   

12.
六氰合铁酸铜钴-多壁碳纳米管修饰电极研究   总被引:1,自引:0,他引:1  
采用电沉积方法制备六氰合铁酸铜钴-多壁碳纳米管复合修饰电极(CuCoHCF-MWCNTs/GCE).研究碳纳米管用量、电解液组成对该修饰电极性能的影响.结果表明,与单一的六氰合铁酸铜钴薄膜修饰电极相比,六氰合铁酸铜钴-多壁碳纳米管复合修饰电极具有更优良的电化学特性,以其催化氧化过氧化氢,峰电流与过氧化氢浓度在3.16×10-5~2.92×10-3mol·L-1范围内呈良好的线性关系,线性回归方程为ip(μA)=0.5529+1.1299C(×10-4mol·L-1),相关系数r=0.9966,检出限为1.75×10-5mol·L-1.  相似文献   

13.
锂离子电池正极材料LiMn2-xCrxO4电化学性能的研究   总被引:4,自引:1,他引:4  
针对尖晶石型LiMn2O4锂离子电池正极材料的容量衰减,提出了相应的抑制方法,所合成的LiMn2-xCrxO4(0相似文献   

14.
讨论了以5-Br-PADAP为衍生试剂,用Triton X-114非离子表面活性剂浊点萃取富集铜(Ⅱ)、钴(Ⅱ)的条件,并于ODS柱上,用内含2.0mmol·L^-1十六烷基三甲基溴化铵(CTMAB)和5mmol·L^-1 pH5.0 HAc—NaAc缓冲溶液的V(甲醇)+V(乙腈)+V(水)=67+8+25混合液作流动相.检测波长为568nm,流量为0.8mL·min^-1。,发展了浊点萃取-高效液相色谱法测定铜、钴的新方法。在选定条件下,大多数离子不干扰测定,方法灵敏度高,经浊点萃取后可提高测定响应值7—8倍,对铜、钴的检测限分别为0.5μg·L^-1,0.8μg·L^-1。方法可用于水样中钴(Ⅱ)、铜(Ⅱ)的测定,结果令人满意。  相似文献   

15.
采用一种在CoNi2S4上电沉积NiS的有效方法来改善钴/镍硫化物的性能。CoNi2S4@NiS电极材料在1 A·g^-1时比电容达到1433 F·g^-1,并具有很好的倍率性能。CoNi2S4@NiS和还原氧化石墨烯组装成的柔性固态非对称超级电容器的能量密度在功率密度为800 W·kg^-1时达到36.6 Wh·kg^-1,并且在10000次充放电后表现出良好的循环性能,循环保持率达87.8%。  相似文献   

16.
摘要 运用EIS研究了LiCoO2正极在1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中0~30℃范围内阻抗谱特征、SEI膜阻抗、电子电阻和电荷传递电阻等随温度的变化。结果表明,LiCoO2正极的EIS谱特征与温度有关,随温度的升高其低频区域在1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中分别于10和20℃出现反映锂离子固态扩散的斜线。LiCoO2正极在 1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中,锂离子迁移通过SEI膜的离子跳跃能垒平均值分别为37.74和26.55KJ/mol;电子电导率的热激活化能平均值分别为39.08和53.81KJ/mol;嵌入反应活化能平均值分别为68.97和73.73KJ/mol。  相似文献   

17.
目前研究较多的锂离子电池正极材料主要有LiCoO2、LiNiO2和LiMn2O4犤1犦,虽然LiCoO2的成本相对较高,但LiCoO2具有最为优良的电化学性能,如高且平稳的充放电平台、高比容量以及良好的循环性能犤2犦,是目前应用最广泛的商品化电极材料。LiCoO2材料主要采用高温固相法犤3~5犦制备,该方法工艺简单,容易实现大规模生产,但缺点是需要较高的焙烧温度和较长的焙烧时间,且反应原料混合均匀程度有限,易导致非化学计量、非均相以及不规则的颗粒形貌等,因此材料的比容量、循环寿命等电化学性能以及反应的可控性还不甚理想。研究表明犤6犦电极材…  相似文献   

18.
Journal of Solid State Electrochemistry - This paper discusses the electrolyte distribution over the surface of a 4.5 V LiCoO2 electrode via linear sweep voltammetry using the Pt probe of...  相似文献   

19.
LiCoO(2) material is recovered from spent lithium-ion batteries and investigated as anode materials for Ni/Co power batteries for the first time. LiCoO(2) electrodes with a small amount of S-doping display excellent electrochemical properties. The electrochemical reactions occurring on M0 electrodes during the first several cycles and after being activated are proposed, respectively. A function mechanism of S powder on M10 electrode is also proposed.  相似文献   

20.
We report reactions of cobalt(II) acetate with a series of ditopic bis(tpy) ligands (tpy = 2,2':6',2'-terpyridine) containing flexible polyethyleneoxy spacers (tpy-4'-O{(CH(2))(2)O}(n)-4'-tpy, n = 2, 3, 4 or 6 ligands 1-4, respectively) which result in the formation of complicated mixtures of species, presumed to be both open chain and cyclic species. Well resolved paramagnetically shifted (1)H NMR spectra are a powerful tool for the analysis of these solution systems. Upon equilibration, [n + n] metallomacrocycles are isolated as the dominant (thermodynamic) species in some cases, and the single crystal X-ray structures of [Co(2)(3)(2)][PF(6)](4)·6MeCN and [Co(2)(4)(2)][PF(6)](5)·2MeCN (a mixed cobalt(ii)/cobalt(iii) species) are presented. Oxidation of the equilibrated cobalt(II) mixtures to kinetically inert cobalt(III) species provides additional evidence for the formation of metallomacrocycles as the thermodynamic products. Single crystal structural data for [Co(3)(2)(3)][PF(6)](9)·2MeCN·3.5H(2)O, [Co(2)(3)(2)][PF(6)](6)·10MeCN and [Co(2)(4)(2)][PF(6)](6)·6MeCN confirm the assembly of [2 + 2] and [3 + 3] metallomacrocycles. PGSE NMR spectroscopy has been used to determine the hydrodynamic radii of the solution species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号