首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
《Chemical physics letters》1987,139(6):496-498
Exposure of 1,1-dimethylallene to a beam of spin-polarised, positive muons resulted in the effective addition of muonium atoms to the central carbon atom, giving the muonated 1,1-dimethylallyl radical, Me2CCMu-⋯H2, and to the methylene carbon atom, giving the vinyl radical, Me2C⋯CH2Mu. The muon—electron hyperfine coupling constants in these radicals, and their temperature dependences, are compared with ESR data for related protic radicals.  相似文献   

2.
There is a pressing need to identify and monitor reaction intermediates in water at high temperatures and pressures, but conventional techniques have limited capability for studying transient free radicals under such challenging conditions. Apparatus has now been developed to permit muon avoided-level crossing spectroscopy (muLCR) of organic free radicals in superheated water. The combination of muLCR with transverse-field muon spin rotation (TF-muSR) provides the means to identify and characterize free radicals via their nuclear hyperfine coupling constants. Because the radicals are derived from the addition of muonium (Mu = mu+ e-) to unsaturated compounds, the ensuing muoniated free radicals correspond to conventional organic free radicals but with a muon spin label substituted for one of the protons. Muon spin spectroscopy is the only technique presently being used to characterize transient free radicals under hydrothermal conditions in an unambiguous manner, free from interference from other reaction intermediates. This paper demonstrates how muoniated radicals can be used to monitor the species present in hydrothermal systems, and examples are presented from two classes of reaction: dehydration of alcohols and enolization of ketones. Spectra are displayed and hyperfine constants reported for muoniated forms of the following free radicals in superheated water (typically 350 degrees C at 250 bar): 2-propyl, 2-methyl-2-propyl (tert-butyl), and 2-hydroxy-2-propyl. The latter radical is the product of muonium addition to both the keto and the enol forms of acetone, but different isotopomers are produced according to which reaction channel is dominant. This should prove invaluable in future studies of the role of enols in combustion.  相似文献   

3.
Muoniated radicals were produced by the addition of muonium (Mu) to the aromatic compound p-xylene (1) in the solid and liquid states and to the strained aromatic compound [2.2]paracyclophane (2) in the solid state. The radicals were characterized by avoided level crossing muon spin resonance spectroscopy and identified by comparing the experimentally determined muon hyperfine coupling constants with values obtained from DFT calculations. Mu was observed to add to both the secondary and tertiary carbons of 1, with the relative yield of the Mu adduct of the tertiary carbons estimated to be ~10% in the liquid phase. The relative yield of the tertiary adduct is much higher in the solid state although this cannot be calculated exactly due to the overlap of resonances and the apparent nonuniform distribution of the radical orientations. There are three possible addition sites in 2 due to the lower symmetry of the six-membered ring compared with 1. Mu can add to the secondary carbons either from the outside of 2, generating the "exo" adduct, or from the inside, generating the "endo" adduct. The relative yields of the exo, endo, and tertiary carbon adducts are 67.1(1), 21.8(1), and 11.1(1)%, respectively. The barriers to Mu addition at the different sites of isolated molecules were determined from DFT calculations. The barriers for Mu addition to 2 are lower than the barriers for Mu addition to 1, except for addition to the "endo" position, where the unfavorable steric interactions with the second ring of 2 raise the addition barrier considerably. The measured relative yields do not reflect the distribution of products calculated using the activation energies obtained from the DFT calculations due to strong steric interactions with neighboring molecules.  相似文献   

4.
Radicals formed by the addition of hydrogen (H) or muonium (Mu) to tris(8-hydroxyquinoline)aluminum(III) (Alq(3)) have been studied using density functional theory (DFT) calculations. Drew et al. (Phys. Rev. Lett. 2008, 100, 116601) studied Alq(3) using the longitudinal field muon spin relaxation technique and assumed the formation of muoniated radicals and rapid intermolecular electron hopping with a rate of (1.4 ± 0.2) × 10(12) s(-1). In this work, the results of DFT calculations on Alq(3), the H/Mu adducts of Alq(3), and the corresponding anions and cations are reported. The energy required to transfer an electron to or from the H/Mu adducts of Alq(3) is prohibitively large, ranging from 4.09 to 5.68 eV, which suggests that the unpaired electron does not hop onto neighboring molecules and that there is no long-range diffusion of the unpaired electron. The hyperfine coupling constants for the muoniated radicals were calculated and used to predict avoided level crossing resonance fields, which will allow experimenters to confirm that the unpaired electron is localized in close proximity to the muon.  相似文献   

5.
A 1,3‐diphosphacyclobutane‐2,4‐diyl contains a unique unsaturated cyclic unit, and the presence of radical‐type centers have been expected as a source of functionality. This study demonstrates that the P‐heterocyclic singlet biradical captures muonium (Mu=[μ+e?]), the light isotope of a hydrogen radical, to generate an observable P‐heterocyclic paramagnetic species. Investigation of a powder sample of 2,4‐bis(2,4,6‐tri‐t‐butylphenyl)‐1‐t‐butyl‐3‐benzyl‐1,3‐diphosphacyclobutane‐2,4‐diyl using muon (avoided) level‐crossing resonance (μLCR) spectroscopy revealed that muonium adds to the cyclic P2C2 unit. The muon hyperfine coupling constant (Aμ) indicated that the phosphorus atom bearing the t‐butyl group trapped muonium to provide a metastable P‐heterocyclic radical involving the ylidic MuP(<)=C moiety. The observed regioselective muonium addition correlates the canonical formula of 1,3‐diphosphacyclobutane‐2,4‐diyl.  相似文献   

6.
The positive muon (μ+) can be regarded as a light isotope of proton and has been an important tool to study radical reactions of organic compounds. Recently, muons have been applied to produce short-lived paramagnetic species from the heavier unsaturated organic molecules including the p-block elements. This article overviews recent muon spin rotation/resonance (μSR) studies on the phosphorus analogs of alkenes, anthracenes, and cyclobutane-1,3-diyls together with the fundamentals of μSR. The acyclic phosphaalkene of P=C and phosphasilenes of P=Si can accept muonium (Mu=[μ+e]) at the heavier double bonds, and the corresponding radicals have been characterized. The phosphorus atom in 9-phosphaanthracene, whose P=C double bond is stabilized by the peri-substituted CF3 groups, predominantly captures muonium to provide the corresponding paramagnetic fused heterocyclic system. The peri-trifluoromethyl groups are functional to promote the unprecedented light isotope effect of muon providing the planar three-cyclic molecular structure to consume the increased zero-point energy. The formally open-shell singlet 1,3-diphosphacyclobutane-2,4-diyl unit can accept muonium at the (ylidic) phosphorus or the skeletal radicalic carbon, and the corresponding paramagnetic phosphorus heterocycles can be characterized by μSR. The findings on these muoniation processes to the unsaturated phosphorus-containing compounds will contribute not only to development of novel paramagnetic functional species but also to progress on muon science.  相似文献   

7.
Low-temperature UV irradiation of the N-heterocyclic carbene complex Ru(IEt2Me2)(PPh3)2(CO)H2 (IEt2Me2 = 1,3-bis(ethyl)-4,5-dimethylimidazol-2-ylidene) leads to a remarkable photoisomerization reaction. By combining in situ photolysis and parahydrogen experiments to characterize the ultimate photoproducts and DFT calculations to interrogate the structures of the key 16-electron intermediates, the importance of both PPh3 and H2 loss pathways has been established.  相似文献   

8.
Bis(1,3-dimethylimidazol-2-ylidene)silver(I) nitrate and bis(4,5-dichloro-1,3-dimethylimidazol-2-ylidene)silver(I) nitrate were prepared by reacting the corresponding imidazolium nitrate salts with silver oxide. Bis(1,3-dimethylimidazol-2-ylidene)gold(I) nitrate and bis(4,5-dichloro-1,3-dimethylimidazol-2-ylidene)gold(I) nitrate salts were prepared via transmetallation of their silver precursors with chloro dimethylsulfide gold. The anticancer properties were determined using NCI-H460 lung cancer cells. Efficacy was established by comparison of the gold and silver compounds with cisplatin.  相似文献   

9.
Understanding the characteristics of radicals formed from silicon‐containing heavy analogues of alkenes is of great importance for their application in radical polymerization. Steric and electronic substituent effects in compounds such as phosphasilenes not only stabilize the Si=P double bond, but also influence the structure and species of the formed radicals. Herein we report our first investigations of radicals derived from phosphasilenes with Mes, Tip, Dur, and NMe2 substituents on the P atom, using muon spin spectroscopy and DFT calculations. Adding muonium (a light isotope of hydrogen) to phosphasilenes reveals that: a) the electron‐donor NMe2 and the bulkiest Tip‐substituted phosphasilenes form several muoniated radicals with different rotamer conformations; b) bulky Dur‐substituted phosphasilene forms two radicals (Si‐ and P‐centred); and c) Mes‐substituted phosphasilene mainly forms one species of radical, at the P centre. These significant differences result from intramolecular substituent effects.  相似文献   

10.
Muonium-substituted free radicals are observed by muon spin rotation when positive muons are stopped in liquid substituted benzenes. From muon precession frequencies in high external magnetic fields the isotropic muon-electron hyperfine coupling constants Aμ are determined. 66 radicals are assigned to ortho-, meta- and para-substituted cyclohexadienyl-type radicals. Formally they are produced by addition of the light hydrogen isotope muonium to 24 mono-substituted benzenes. The distribution of muons between radicals and diamagnetic molecules is suggested to be governed by radiolytical processes near the end-of-track of the thermalizing muon.  相似文献   

11.
The hyperfine coupling constants (HFCCs) of all the butyl radicals that can be produced by muonium (Mu) addition to butene isomers (1- and 2-butene and isobutene) have been calculated, to compare with the experimental results for the muon and proton HFFCs for these radicals reported in paper II (Fleming, D. G.; et al. J. Phys. Chem. A 2011, 10.1021/jp109676b) that follows. The equilibrium geometries and HFCCs of these muoniated butyl radicals as well as their unsubstituted isotopomers were treated at both the spin-unrestricted MP2/EPR-III and B3LYP/EPR-III levels of theory. Comparisons with calculations carried out for the EPR-II basis set have also been made. All calculations were carried out in vacuo at 0 K only. A C-Mu bond elongation scheme that lengthens the equilibrium C-H bond by a factor of 1.076, on the basis of recent quantum calculations of the muon HFCCs of the ethyl radical, has been exploited to determine the vibrationally corrected muon HFCCs. The sensitivity of the results to small variations around this scale factor was also investigated. The computational methodology employed was "benchmarked" in comparisons with the ethyl radical, both with higher level calculations and with experiment. For the β-HFCCs of interest, compared to B3LYP, the MP2 calculations agree better with higher level theories and with experiment in the case of the eclipsed C-Mu bond and are generally deemed to be more reliable in predicting the equilibrium conformations and muon HFCCs near 0 K, in the absence of environmental effects. In some cases though, the experimental results in paper II demonstrate that environmental effects enhance the muon HFCC in the solid phase, where much better agreement with the experimental muon HFCCs near 0 K is found from B3LYP than from MP2. This seemingly better level of agreement is probably fortuitous, due to error cancellations in the DFT calculations, which appear to mimic these environmental effects. For the staggered proton HFCCs of the butyl radicals exhibiting no environmental effect in paper II, the best agreement with experiment is consistently found from the B3LYP calculations, in agreement also with benchmark calculations carried out for the ethyl radical.  相似文献   

12.
C-N bond activation of the N-heterocyclic carbene 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene occurs with Ru(PPh3)3(CO)HCl to give the C-2 bound 1-isopropyl-4,5-dimethylimidazol-2-ylidene complex Ru(C-IiPrHMe2)(PPh3)2(CO)HCl via loss of propene. In the presence of free carbene, this undergoes tautomerism to the corresponding imidazole compound Ru(N-IiPrHMe2)(PPh3)2(CO)HCl.  相似文献   

13.
《Chemical physics》1987,114(3):399-409
Muonium (Mu, μ+e) is generally regarded as a light isotope of hydrogen. The procession signals of muonium in single crystals of H2O and D2O ice have been studied from 8 to 263 K using the muon spin rotation (μSR) technique. Transverse spin relaxation rates have been extracted and interpreted in terms of modulation of the dipolar interaction between muonium and the protons/deuterons in the lattice by translational diffusion of muonium. In contrast to the situation for H and a previous claim for Mu, muonium is found to be diffusing at temperatures as low as 8 K. An activation energy of 40 meV is obtained by fitting the highest temperature data to an Arrhenius expression. At low temperature muonium is thought to diffuse by quantum tunnelling.  相似文献   

14.
We report the first direct observation of radicals formed by formal addition of muonium to liquid organic compounds. They are characterized by muon precession frequencies in transverse magnetic fields of 0.3–5.0 kG. Comparison of the isotropic hyperfine coupling constants with those of hydrogen analogue reveals large isotope effects.  相似文献   

15.
The muon hyperfine coupling constant (hfc) of the light hydrogen isotope muonium (Mu) was measured in aqueous methanol, NaCl, and KCl solutions with varying concentrations, in deuterated water, and in deuterated methanol. The muon hfc is shown to be sensitive to the size and composition of the primary solvation shell, and the three-dimensional harmonic oscillator model of Roduner et al. (J. Chem. Phys. 1995, 102, 5989) has been modified to account for dependence of the muon hfc on the methanol or salt concentration. The muon hfc of Mu in the aqueous methanol solutions decreases with increasing methanol concentration up to a mole fraction (chiMeOH) of approximately 0.4, above which the muon hfc is approximately constant. The concentration dependence of the muon hfc is due to hydrophobic nature of Mu. It is preferentially solvated by the methyl group of methanol, and the proportion of methanol molecules in the primary solvation shell is greater than that in the bulk solution. Above chiMeOH approximately 0.4, Mu is completely surrounded by methanol. The muon hfc decreases with increasing methanol concentration because more unpaired electron spin density is transferred from Mu to methanol than to water. The unpaired electron spin density is transferred from Mu to the solvent by collisions that stretch one of the solvents bonds. The amount of spin density transferred is likely inversely related to the activation barrier for abstraction from the solvent, which accounts for the larger muon hfc in the deuterated solvents. The muon hfc of Mu in electrolyte solution decreases with increasing concentration of NaCl or KCl. We suggest that the decrease of the muon hfc is due to the amount of spin density transferred from Mu to its surroundings being dependent on the average orientation of the water molecules in the primary solvation shell, which is influenced by both Mu and the ions in solution, and spin density transfer to the ions themselves.  相似文献   

16.
Muonium (Mu), an H atom analogue, is employed to probe the addition of free radicals to the P=C bond of a phosphaalkene. Specifically, two unprecedented muoniated free radicals, MesP.?CMu(Me)2 ( 1 a , minor product) and MesPMu?C.Me2 ( 1 b , major product), were detected by muon spin spectroscopy (μSR) when a solution of MesP=CMe2 ( 1 : Mes=2,4,6‐trimethylphenyl) was exposed to a beam of positive muons (μ+). The μ+ serves as a source of Mu (that is, Mu=μ++e?). To confirm the identity of the major product 1 b , its spectral features were compared to its isotopologue, MesPH‐C.(Me)CH2Mu ( 2 a ). Conveniently, 2 a is the sole product of the reaction of MesPH(CMe=CH2) ( 2 ) with Mu. For all observed radicals, muon, proton, and phosphorus hyperfine coupling constants were determined by μSR and compared to DFT‐calculated values.  相似文献   

17.
Nitroxyl radicals were formed by adding the light hydrogen isotope, muonium to the spin traps DMPO (5,5-dimethyl-1-pyrroline-N-oxide) and PBN (N-tert-butyl-alpha-phenylnitrone) sorbed as 30 wt% ethanol solutions in silica-gel; evidence is presented for a specific hydrogen-bonded interaction between the DMPO adduct and the silica surface; longitudinal-field muon spin relaxation measurements (LF-MuSRx) were performed which identified two distinct motional regimes in both samples.  相似文献   

18.
The nucleophilicity parameters (N) of 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene borane and 1,3-dimethylimidazol-2-ylidene borane are 9.55 and 11.88. This places N-heterocyclic carbene boranes (NHC-boranes) among the most nucleophilic classes of neutral hydride donors. Reductions of highly electron-poor C═N and C═C bonds provide hydrogenation products along with new, stable borylated products. The results suggest that NHC-boranes have considerable untapped potential as neutral organic reductants.  相似文献   

19.
New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from μSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ~3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.  相似文献   

20.
It is possible to study H atom chemistry in aqueous systems over a wide range of conditions, from standard to supercritical, using the exotic atom muonium (Mu) as an effective light isotope of hydrogen. The Mu rate constants exhibit marked non-Arrhenius behaviour, going through a maximum and fall-off as the density is reduced in the neighbourhood of the critical point, and subsequent recovery as the medium becomes more gas-like. This is illustrated with new kinetic data for the reaction of Mu with methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号