首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Initial cell evaluation on alginate/hydroxyapatite block was investigated. Sodium alginate with 1, 3 and 5% concentration was obtained via neutral extraction of locally obtained brown seaweed, Sargassumpolycystum. Commercially available hydroxyapatite (HAp) powder was pressed uniaxially at 3 MPa to obtain the HAp block. The HAp block was then sintered at 900̊C. The sintered HAp block was then immersed in the sodium alginate solution at different concentration for 24 hours under vacuum condition. Morphological observations show that normal cell growth was observed on alginate/HAp blockafter post treatment for day 1 and 2. However, the cell starts to show some distinct morphological changes when compared to the control cells for day 5 and 7. Cell viability assay results shows that a consistent cell growth was obtained with HAp block incorporated with 3 and 5% sodium alginate. While HAp block without the incorporation of sodium alginate and HAp block incorporated with 1% sodium alginate concentration shows inconsistent cell growth. Initial cell evaluation results suggest that alginate/HAp block shows no toxicity on cell attachment and proliferation.  相似文献   

2.
Magnesium hydrogen phosphate, calcium hydroxyapatite, and strontium hydroxyapatite were successfully prepared from sol consisting of sodium alginate and Na4P2O7 with Mg2+, Ca2+, and Sr2+ in the corresponding nitrates, respectively. It is revealed that the order of the addition of those substrates and the role of sodium alginate are important factors for the preparation of desired phosphate compounds. According to the previous paper on the preparation of calcium hydroxyapatite, sodium alginate was mixed with aqueous Na4P2O7, followed by the addition of the aqueous divalent cations, resulting in the poor formation of the target phosphates. However, as a revised sol-gel technique, sodium alginate was added to the mixture of Na4P2O7 and aqueous Mg2+ and Sr2+, resulting in a rather favorable formation of MgHPO4 and strontium hydroxyapatite, respectively, while the sol thus obtained was stable within a few days. However for aqueous Ca2+, calcium hydroxyapatite could not be obtained through the revised sol-gel technique. In the preparation of magnesium hydrogen phosphate, sodium alginate contributes mainly to the sol formation of the precursor. The ion exchange between Na+ in sodium alginate and aqueous Ca2+ was important for the preparation of calcium hydroxyapatite. In contrast, the reaction of sodium alginate with the mixture of Na4P2O7 and aqueous Sr2+ afforded strontium hydroxyapatite at the specific ratio of those three substrates. The structure of calcium and strontium phosphates prepared from the revised sol-gel process evidently depended on the amount of sodium alginate introduced into the mixture of Na4P2O7 and the corresponding divalent cations.  相似文献   

3.
Hydrogels have been used for a variety of biomedical applications; in tissue engineering, they are commonly used as scaffolds to cultivate cells in a three-dimensional (3D) environment allowing the formation of organoids or cellular spheroids. Egg white-alginate (EWA) is a novel hydrogel which combines the advantages of both egg white and alginate; the egg white material provides extracellular matrix (ECM)-like proteins that can mimic the ECM microenvironment, while alginate can be tuned mechanically through its ionic crosslinking property to modify the scaffold’s porosity, strength, and stiffness. In this study, a frozen calcium chloride (CaCl2) disk technique to homogenously crosslink alginate and egg white hydrogel is presented for 2.5D culture of human salivary cells. Different EWA formulations were prepared and biologically evaluated as a spheroid-like structure platform. Although all five EWA hydrogels showed biocompatibility, the EWA with 1.5% alginate presented the highest cell viability, while EWA with 3% alginate promoted the formation of larger size salivary spheroid-like structures. Our EWA hydrogel has the potential to be an alternative 3D culture scaffold that can be used for studies on drug-screening, cell migration, or as an in vitro disease model. In addition, EWA can be used as a potential source for cell transplantation (i.e., using this platform as an ex vivo environment for cell expansion). The low cost of producing EWA is an added advantage.  相似文献   

4.
Novel two-ply dense composite membranes were prepared using successive castings of sodium alginate and chitosan solutions for the pervaporation dehydration of isopropanol and ethanol. Preparation and operating parameters namely polymer types facing to the feed stream, NaOH treatment for the regeneration of chitosan, and crosslinking system types were investigated using the factorial design method. It was shown that these parameters were all critical to the performance of the membrane in the form of the main and interaction effects. The pervaporation performance of the two-ply membrane with its sodium alginate layer facing the feed side and crosslinked or insolubilized in sulfuric acid solution was compared with the pure sodium alginate and the chitosan membranes in terms of the flux and separation factors. It was shown that although its flux was lower than that of the pure sodium alginate and chitosan membranes, the separation factors at various alcohol concentrations were in between values for the two pure membranes. For the dehydration of 90 wt% isopropanol–water mixtures the performance of the two-ply membrane which was moderately crosslinked in formaldehyde was found to match the high performance of the pure sodium alginate membrane. This two-ply membrane had fluxes of 70 g/m2 h at 95% EtOH, 554 g/m2 h at 90% PrOH and separation factors of 1110 at 95% EtOH, 2010 at 90% PrOH and its mechanical properties were better than that of the pure sodium alginate membrane.  相似文献   

5.
The aim of this study was to investigate the effect of sodium alginate on the physical and dissolution properties of Surelease-matrix pellets prepared by a novel pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The mean values of the shape factor (e(R)) and the aspect ratio of Surelease-matrix pellets were 0.615-0.625 and 1.06-1.070, respectively, indicating good sphericity of the pellets. The drug release rate increased as the amount of sodium alginate increased due to hydration, swelling, and erosion within the Surelease-matrix pellets. In addition, the porosity of pellets also increased with increasing sodium alginate content. The results of this study show that sodium alginate has a greater effect on the drug release rate than the drug release mechanism within the Surelease-matrix for sparingly water-soluble drug, such as tamsulosin hydrochloride.  相似文献   

6.
海藻酸钠/羧甲基淀粉共混膜   总被引:6,自引:0,他引:6  
用溶液共混法成功制备出海藻酸钠/羧甲基淀粉共混膜,IR、XRD、SEM结构表征以及力学性能、吸水性和水蒸汽透过率测定结果表明:共混膜中海藻酸钠和羧甲基淀粉间存在强烈的分子间氢键等相互作用及良好的相容性;随羧甲基淀粉含量的增加,共混膜的吸水率显著降低;当羧甲基淀粉含量(wCMS)=0.20时,共混膜的抗张强度和断裂伸长率分别为53.1MPa和5.3%,比海藻酸钠膜分别提高了97.4%和60.6%,水蒸汽透过率达最小值,是一种具有潜在应用前景的可食性包装膜材料。  相似文献   

7.
A simple, rapid and reliable capillary electrophoresis method with a photodiode array detector was developed for determination of azide as the 3,5-dinitrobenzoyl derivative in drink samples fortified with sodium azide. Sample preparation was simple and rapid because no more than a simple dilution of samples is needed after quick derivatization. Separation was carried out using a buffer system comprising 25 mM phosphate buffer and 4 mM cetyltrimethylammonium hydroxide at pH 3.0. Methyl benzoate was selected as the internal standard (IS). This study investigated the influence of the concentration of phosphate buffer and electroosmotic flow (EOF) modifier, and the buffer pH on migration time and signal response. The optimized method made it possible to determine azide within 5 min. The limit of detection was determined to be 1.9 microg/ml with SIN > 3. The quantitation range was 6.5-323 microg/ml. By the method recoveries of azide in drink samples fortified with sodium azide were investigated. Mean recovery values ranged from 93.6 to 105.8% and results were satisfactory. In addition, no interference was observed in electropherograms of drink samples fortified with sodium azide. Thus, by this method, azide in drink samples can be determined rapidly with high recoveries and good selectivity despite extremely simple sample preparation.  相似文献   

8.
Hydrogels are attractive biomaterials for three-dimensional cell culture and tissue engineering applications. The preparation of hydrogels using alginate and gelatin provides cross-linked hydrophilic polymers that can swell but do not dissolve in water. In this work, we first reinforced pure alginate by using polyoxyethylene as a supporting material. In an alginate/PEO sample that contains 20 % polyoxyethylene, we obtained a stable hydrogel for cell culture experiments. We also prepared a stable alginate/gelatin hydrogel by cross-linking a periodate-oxidized alginate with another functional component such as gelatin. The hydrogels were found to have a high fluid uptake. In this work, preparation, characterization, swelling, and surface properties of these scaffold materials were described. Lyophilized scaffolds obtained from hydrogels were used for cell viability experiments, and the results were presented in detail.  相似文献   

9.
《先进技术聚合物》2018,29(9):2553-2559
A simple 2‐step method, consisting of film casting and polyvinyl alcohol leaching, is proposed to prepare magnesium oxide (MO) nanoparticle‐reinforced sodium alginate scaffolds with right properties for bone tissue engineering. The cytocompatibility of the as‐prepared scaffolds was also evaluated using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium‐bromide yellow tetrazole assay test, wherein chondrocyte cells had been considered as target cells. According to the results, the ensuing sodium alginate nanocomposites, containing 4‐wt% MO nanoparticles, demonstrated the highest physical and mechanical properties after leaching step. The Young modulus of sodium alginate/4‐wt% MO was improved about 44%, in comparison with that of the pure alginate sample. Furthermore, incorporating MO nanoparticles up to 4 wt% controlled the liquid uptake capacity of scaffolds vis‐à‐vis the resultant pure sodium alginate sample. Moreover, with increasing the nanoparticle content, the antibacterial properties of scaffolds enhanced, but their degradation rates under in vitro conditions tapered off. With the introduction of 3‐ and 4‐wt% MO, the average diameter of the bacterial zone of the scaffold samples reduced to less than 10 mm2, suggesting an insensitive antimicrobial performance, compared with the pure sodium alginate and the samples with 1‐ and 2‐wt% MO content, which exhibit antimicrobial sensitivity. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium‐bromide assay test also revealed the cultivated chondrocyte cells on the 4‐wt% MO nanoparticle‐reinforced scaffold possessed better interaction as well as appropriate cell attachment and proliferation than the pristine sodium alginate sample.  相似文献   

10.
In the present work, the herb (Poria cocos (Schw.) Wolf) residue, as an environmentally friendly and renewable biomass source, was converted into novel biochar. Biochar/sodium alginate mixed matrix membrane was fabricated. On this basis, a biochar/sodium alginate mixed matrix membrane-based in-syringe solid-phase extraction was developed combined with ultra-high performance liquid chromatography-tandem mass spectrometry to determine nitroimidazoles in water samples. The factors including times of exaction, type, and volume of elution solvent, and sample solution pH were thoroughly optimized. Then the correlation coefficient was 0.9995–0.9997. The limit of detection of four analytes was between 0.006 and 0.014 ng/mL, and the recovery was between 79.02% and 99.1%. Consequently, the established method would provide a new perspective on monitoring nitroimidazoles in water samples.  相似文献   

11.
海藻酸钠/水性聚氨酯共混膜的结构表征和性能测试   总被引:5,自引:0,他引:5  
本文将海藻酸钠与聚酯型水性聚氨酯共混制膜,并通过红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)、紫外光谱(UV)、力学性能测试对共混膜的结构和性能进行了表征与测试。结果表明,共混膜中两种分子间存在着强烈的相互作用和良好的相容性,与纯海藻酸钠膜相比共混膜有较高的抗水性和断裂伸长率。  相似文献   

12.
Lin YH  Yang YW  Chen YD  Wang SS  Chang YH  Wu MH 《Lab on a chip》2012,12(6):1164-1173
This study reports the utilisation of an optically switched dielectrophoretic (ODEP) force for the manipulation and assembly of cell-encapsulating alginate microbeads in a microfluidic perfusion cell culture system for bottom-up tissue engineering. One of the key features of this system is the ODEP force-based mechanism, which allows a commercial projector to be coupled with a computer to manipulate and assemble cell-encapsulating microbeads in an efficient, manageable, and user-friendly manner. Another distinctive feature is the design of the microfluidic cell culture chip, which allows the patterned cell-encapsulating microbeads to be cultivated on site under culture medium perfusion conditions. For demonstrating its application in bottom-up cartilage tissue engineering, chondrocyte-encapsulating alginate microbeads varying in encapsulated cell densities were generated. The manipulation forces associated with operating the alginate microbeads were experimentally evaluated. The results revealed that the measured manipulation forces increased with increases in both the applied electric voltage and the number of cells in the alginate microbeads. Nevertheless, the observed manipulation force was found to be independent of the size of the cell-free alginate microbeads. It can be speculated that the friction force may influence the estimation of the ODEP force within the experimental conditions investigated. In this study, chondrocyte-encapsulating alginate microbeads with three different cell densities were manipulated and assembled in the proposed microfluidic system to form a compact sheet-like cell culture construct that imitates the cell distribution in the cross-section of native articular cartilage. Moreover, the demonstration case also showed that the cell viability of the cultured cells in the microfluidic system remained as high as 96 ± 2%. In this study, four sheet-like cell culture constructs were stacked to create a larger assembled cell culture construct. The cell distribution inside the cell culture construct was further confirmed by a confocal microscopy observation, which showed that the distribution was similar to that in native articular cartilage. As a whole, the proposed system holds great promise as a platform for engineering tissue constructs with easily tunable inner cell distributions.  相似文献   

13.
In this paper, we introduce a new continuous production technique of calcium alginate fibers with a microfluidic platform similar to a spider in nature. We have used a poly(dimethylsiloxane) (PDMS) microfluidic device embedded capillary glass pipet as the apparatus for fiber generation. As a sample flow, we introduced a sodium alginate solution, and, as a sheath flow, a CaCl2 solution was introduced. The coaxial flows were generated at the intersection of both flows, and the sodium alginate was solidified to calcium alginate by diffusion of the Ca2+ ions during traveling through the outlet pipet. The diameter changes in the sample and sheath flow variations were examined, and the size of alginate fibers was well regulated by changing both flow rates. In addition, we have measured the elasticity of dried fibers. We evaluated the potential use of alginate fibers as a cell carrier by loading human fibroblasts during the "on the fly" fabrication process. From the LIVE/DEAD assay, cells survived well during the fiber fabrication process. In addition, we evaluate the capability of loading the therapeutic materials onto the alginate fibers by immobilized bovine serum albumin-fluorescein isothiocyanate in the fibers.  相似文献   

14.
Fresh or hydrolyzed sodium alginate was used as a material for preparing calcium alginate microspheres, and a drastic difference in porous structure was observed between them, even though the other materials and the preparation method except for the sodium alginate were exactly the same. When fresh sodium alginate was used, nonporous microspheres were obtained. In contrast, when 82-day-hydrolyzed sodium alginate, whose molecular weight became 7% of the molecular weight of the fresh sodium alginate, was used, porous microspheres with 6.5 times larger BET surface area were obtained. XPS studies indicated that the atomic ratio of Ca, the crosslinker of the alginic acid polymer, was almost the same in both cases. Therefore, the difference in porous structure was not attributed to the amount of crosslinking points, but to the low-molecular-weight compounds formed by hydrolysis, and they would work as pore-generating agents.  相似文献   

15.
Calcium alginate fibers have a novel gel‐forming capability in that, upon the ion exchange between sodium ions in the contact solution and calcium ions in the fiber, the fiber slowly transforms into a fibrous gel. This paper reviews the principles of the gel‐forming process for alginate fibers and analyzed the gelling behavior of various types of alginate fibers. The absorption characteristics of alginate wound dressings were analyzed and it was found that alginate wound dressings absorb a large quantity of liquid into the fiber structure, in addition to those held between the fibers in the textile structure. This gives rise to the unique gel blocking properties of alginate wound dressings. In addition, alginate wound dressings also have novel hemostatic and antimicrobial properties as well as the ability to promote wound healing. They are now widely used in the management of highly exuding wounds such as leg ulcers, pressure sores, and surgical wounds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
IR spectroscopy and scanning electron microscopy were used for the study of formation of calcium alginate particles. The synthesis was carried out in an aqueous medium via reaction between sodium alginate and calcium chloride. It was found that calcium alginate particles with a homogeneous and dense structure were formed at concentrations 2 wt % and 0.1 M of sodium alginate and calcium chloride, respectively. Formation of calcium alginate particles in the systems containing chitosan was accompanied by the emergence of an adsorption layer of chitosan on the particle surface. The thickness of this layer increased with the enhancement of chitosan concentration. The release kinetics of cyclophosphamide from calcium alginate particles in physiological solution in vitro was investigated. The results showed that such factors as elevated temperature at the drying of calcium alginate particles, the increase in the amount of guluronate in the initial sodium alginate, and thickening of the chitosan adsorbed layer led to a significant decrease in the release rate.  相似文献   

17.
Abstract

Isocratic high-performance liquid chromatography on a poly(styrene-divinylbenzene) copolymer column allows the complete separation and resolution of tetracycline, 4-epitetracycline, anhydrotetracycline and 4-epianhydrotetracycline. A fermentation impurity, 2-acetyl-2-decarboxamidotetracycline is also resolved from tetracycline. The mobile phase combines tert.-butanol, water and phosphate buffer, tetrabutylammonium sulphate and sodium ethylenediaminetetraacetate at a pH of 9.0 for elution at a temperature of 60°. The method was used to analyse official standards and commercial samples.  相似文献   

18.
Chitosan-alginate polyelectrolyte complex (PEC) have been prepared in situ in beads and microspheres. This study examines the preparation of suitable chitosan-alginate coacervates for casting into homogeneous PEC films for potential applications in packaging, controlled release systems and wound dressings. Coacervation between chitosan and alginate was rapid, but the rate may be controlled with the addition of water miscible organic solvents. Compared with ethanol and PEG200, acetone was the more promising solvent moderator. Suspensions of fine, uniformly dispersed coacervates were produced by a dropwise addition of 0.25% w/v chitosan solution (solvent: 1: 1 v/v of 2% acetic acid and acetone) into 0.25% w/v sodium alginate solution in water under rapid agitation. The PEC films were transparent and flexible. They exhibited high permeability to water vapor, but resisted complete dissolution in 0.1 M HCI, distilled water and pH 7.4 phosphate buffer solution. Microscopic heterogeneity in the films could be reduced by immersion in aqueous media, but this was accompanied by modifications in the thickness, permeability and mechanical property of the films.  相似文献   

19.
Hydrophobic modified alginate (HM-alginate) was synthesized using a low-energy, environment-friendly process in aqueous solution, with sodium alginate and dodecyl glycidyl ether as starting materials. The HM-alginate was characterized using 1H NMR, and the reaction efficiency was about 40%. The HM-alginate aggregated in solution; the critical micelle concentration (CMC) was determined using surface tension and dynamic light scattering methods. We observed reasonable agreement between the CMC values obtained by the different techniques, and the CMC was 4.0 × 10?4 g/mL. The zeta-potential of the HM-alginate in aqueous solution was about ?82 mV, which is higher than ?51 mV of the sodium alginate. Rheology measurements showed that the HM-alginate solution exhibits a Newtonian behavior at all shear rates, whereas the apparent viscosity is very low. The solubility of the liposoluble substance Sudan IV increased significantly with HM-alginate concentration. This result is promising for potential applications of HM-alginate as an ecology-safe material to encapsulate lipophilic substances.  相似文献   

20.
Alginate and chitosan are among the most common biopolyelectrolytes. Surfactants can be included in alginate and chitosan formulations in order to improve their physical and functional properties. In the present study, the effect of the anionic surfactant sodium dodecyl sulfate (SDS) on alginate‐chitosan polyelectrolyte multilayer (PEM) films is reported for the first time. Layer‐by‐layer deposition technique was employed to prepare the PEM samples and the samples were characterized by ellipsometry, X‐ray reflectivity, atomic force microscopy, and quartz crystal microbalance with dissipation. Incorporation of SDS into PEM formulations increased the film thickness and an increased adsorption behavior between alginate and chitosan layers are observed. Since the concentration of SDS was below its critical micelle concentration, no micelle formation was expected and hydrophobic‐hydrophobic interaction between alginate and SDS might be the main reason. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1798–1803  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号