首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of methods for the separation of enantiomers has attracted great interest in the past 20 years, since it became evident that the potential biological or pharmacological applications are mostly restricted to one of the enantiomers. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of high-performance liquid chromatography (HPLC), thin-layer chromatography and electrophoresis. The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these macrocyclic glycopeptide antibiotics and, through their application, endeavors to demonstrate the mechanism of separation on macrocyclic glycopeptides. The sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

2.
The search for new and effective chiral selectors capable of separating a wide variety of enantiomeric compounds is an ongoing process. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of HPLC, TLC and electrophoresis. More chiral analytes have been resolved through the use of glycopeptides than with all the other macrocyclic antibiotics combined (ansamycins, thiostrepton, aminoglycosides, etc.). The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. Teicoplanin, vancomycin, their analogs and ristocetin A seem to be the most useful glycopeptide HPLC bonded phases for the enantioseparation of proteins and unusal native and derivatized amino acids. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these antibiotics and their application in the enantioseparations of amino acids. The mechanism of separation, the sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

3.
During the last decade, chiral monolithic stationary phases have been prepared and used for rapid enantioseparations in CEC and HPLC. Various chiral selectors are used to prepare these CSPs. The preparation, properties, and applications of these CSPs are discussed in this paper. Attempts have been made to describe optimization strategies and the chiral recognition mechanisms. A comparison of chiral separations in CEC and HPLC is described. Efforts have also been made to predict the future perspectives and challenges of chiral monolithic stationary phases. The most effective chiral selectors include polysaccharides, cyclodextrins, and macrocyclic glycopeptide antibiotics. These chiral phases produced acceptable analytical enantiomeric separation of a variety of racemates. However, the development of these CSPs for preparative‐scale separations is needed.  相似文献   

4.
Chiral separations using the macrocyclic antibiotics: a review   总被引:4,自引:0,他引:4  
The macrocyclic antibiotics have recently gained popularity as chiral selectors in CE, HPLC and TLC. The macrocyclic antibiotics used for chiral separations include the ansamycins, the glycopeptides, and the polypeptide antibiotic thiostrepton. Although not strictly considered macrocyclic antibiotics, the aminoglycosides are antibiotics that have been used for chiral separations in CE. More chiral analytes have been resolved using the glycopeptides than with the other macrocyclic antibiotics combined. The glycopeptides vancomycin, ristocetin A and teicoplanin have been used extensively as chiral selectors in CE, with ristocetin A appearing to be the most useful chiral selector followed by vancomycin and teicoplanin, respectively. The macrocyclic antibiotics have also been used as chiral bonded phases in HPLC, and HPLC stationary phases based on vancomycin, ristocetin A and teicoplanin have been commercialized. Ristocetin A seems to be the most useful glycopeptide HPLC bonded phase, but its greater expense can be a drawback. The macrocyclic antibiotics have been used with micelles to improve efficiency, provide unique selectivity, and extend the range of separations to neutral solutes. Changing the macrocyclic antibiotic used in CE or HPLC can significantly alter the enantioselectivity of the separations. In fact, the glycopeptide antibiotics are complementary to one another, where if a partial enantioresolution is obtained with one glycopeptide, there is a high probability that a baseline or better separation can be obtained with another.  相似文献   

5.
Due to the importance of chiral separations of drugs, pharmaceuticals, agrochemicals and xenobiotics by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE), it is important to have the knowledge of the enantiomeric recognition mechanisms so that scientists may design and module the new chiral selectors for rapid, inexpensive and reproducible chiral separations; specially at preparative scale. The mechanisms of the chiral separation by HPLC and CE using polysaccharides, cyclodextrins, macrocyclic glycopeptide antibiotics, Pirkle type, ligand exchangers, crown ethers and other several types of chiral selectors have been discussed. Various complex formation and different types of interactions responsible for chiral resolution have been presented in detail.  相似文献   

6.
The enantiomeric separation of a novel series of twenty-eight racemic mixtures of citalopram analogues was performed by high performance liquid chromatography (HPLC). Due to the effectiveness of citalopram as an antidepressant drug, the development of new compounds based on its chemical structure is interesting, and their enantiomeric separation is needed to allow further pharmacokinetic studies. Several bonded cyclodextrin (both native and derivatized) and macrocyclic glycopeptide based chiral stationary phases (CSPs) were evaluated for their ability to separate this set of compounds via HPLC. Polar ionic, polar organic, and reversed phase modes were tested. Twenty-five of the racemic mixtures were separated with resolutions and enantiomeric selectivities up to 2.9 and 1.33, respectively. A total of eighteen baseline separations were achieved, while seven compounds were partially separated. Vancomycin based columns operated in the polar ionic mode resulted in the greatest number of separations. Lastly, the chromatographic behaviors of similar compounds were compared based on their chemical structure and also on the chiral selectors used.  相似文献   

7.
Chiral HPLC methods using macrocyclic glycopeptide-based chiral stationary phases have been widely used and reported; however, the development of efficient methods to separate and quantify the analytes with high resolution is a challenging task. Therefore, the knowledge regarding the optimization of chromatographic parameters regarding this type of chiral chromatography is essential. This review presents and discusses the optimization of HPLC conditions and parameters for the chiral resolution of racemic drugs on macrocyclic glycopeptide-based chiral stationary phases. Strategies for chiral method development are presented, using polar ionic, reversed phase, normal phase and polar organic modes. The effect of the most important chromatographic parameters, such as mobile phase composition, flow rate and temperature on the enantioseparation are discussed aiming the adequate screening and optimization protocol for each mode.  相似文献   

8.
Twelve new azole compounds were synthesized through an ene reaction involving methylidene heterocycles and phenylmaleimide, producing four oxazoles, five thiazoles, and one pyridine derivative, and ethyl glyoxylate for an oxazole and a thiazole compound. The twelve azoles have a stereogenic center in their structure. Hence, a method to separate the enantiomeric pairs, must be provided if any further study of chemical and pharmacological importance of these compounds is to be accomplished. Six chiral stationary phases were assayed: four were based on macrocyclic glycopeptide selectors and two on linear carbohydrates, i.e., derivatized maltodextrin and amylose. The enantiomers of the entire set of new chiral azole compounds were separated using three different mobile phase elution modes: normal phase, polar organic, and reversed phase. The most effective chiral stationary phase was the MaltoShell column, which was able to separate ten of the twelve compounds in one elution mode or another. Structural similarities in the newly synthesized oxazoles provided some insights into possible chiral recognition mechanisms.  相似文献   

9.
The ever‐increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra‐high‐resolution chromatography on column packed with chiral stationary phases, both based on sub‐2 μm fully porous and sub‐3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations.  相似文献   

10.
A wide variety of chiral selectors have been employed in CZE, and among them macrocyclic antibiotics including glycopeptides, ansamycins, aminoglycosides and polypeptides exhibited prominent enantioselective properties toward abundant racemic compounds. Compared with CZE, the use of macrocyclic antibiotics as chiral selectors in NACE has not been reported previously. In this study, an approach to the enantioseparation of basic drugs by means of NACE with erythromycin lactobionate (EL) belonging to the group of macrolide antibiotics has been investigated. Especially different from the above four classes of antibiotics, there are no reports concerned with the use of macrolides which belong to macrocyclic antibiotics as chiral selectors in CE. In this work EL is first used as a chiral selector in NACE for the enantiomeric separations of two racemic basic drugs that possess high separability consisting of propranolol and duloxetine. Furthermore, EL possesses advantages such as high solubility and low viscosity in the solvent and very weak UV absorption. The chiral separations were achieved using Tris‐boric acid as the BGE and methanol as the organic medium. In the course of this work we observed that both migration time and enantioseparation were influenced by several parameters such as the pH and composition of the BGE, EL concentration, capillary temperature and applied voltage. Consequently, these parameters were systematically optimized in order to obtain the optimum enantioseparations.  相似文献   

11.
HPLC enantiomeric separations of a wide variety of racemic analytes was evaluated using chiral stationary phases (CSPs) based on the macrocyclic glycopeptides teicoplanin (T), teicoplanin aglycone (TAG), and methylated teicoplanin aglycone (Me-TAG) in two different mobile phase modes, i.e., the RP mode and the polar organic (PO) mode. Comparison of the enantiomeric separations using Chirobiotic T, Chirobiotic TAG, and the methylated form of TAG were conducted in order to gain a better understanding of the roles of the polar functional groups on the CSP. Substantial effects due to the cleavage of saccharides and/or methylation on chiral separations were observed in both separation modes. Improved separation efficiencies for many acidic analytes were obtained by methylating the H-bonding groups of TAG. These groups were believed to be a contributing factor to band broadening on TAG due to their negative effect on mass transfer between the stationary phase and mobile phase. Ionic/dipolar interactions between the carboxylate group of the analytes and the amine groups on T, TAG, or Me-TAG are important for chiral discrimination. Therefore, analytes possessing a carboxyl group are good candidates for successful separations on these CSPs. Hydrophobic interactions are important for enantiomeric separations in the RP mode where the H-bonding interactions between analytes and the chiral selectors are relatively weak. Me-TAG offers higher hydrophobicity, which can accentuate the interactions of analytes with hydrophobic moieties, but these interactions are not necessarily stereoselective. In the PO mobile phase, electrostatic/dipolar interactions between polar functional groups are the dominating interactions in chiral recognition. Another important factor is steric fit, which could be changed with every modification of the T structure. Therefore, substantial changes of enantioseparations were obtained within this studied group of CSPs. The PO mode was shown to be the most powerful mobile phase mode for enantiomeric separations on T-based stationary phases, mainly due to the improved efficiency. Methylation of the TAG proved to be a very useful tool for investigating the chiral recognition mechanism for this group of chiral selectors.  相似文献   

12.
For the first time, three different derivatized cyclofructan chiral stationary phases were used for the direct high‐performance liquid chromatographic enantiomeric separation of 11 new racemic analogs of a natural indole phytoalexin. This class of compounds is known to have significant antiproliferative activity and other potentially useful pharmacological properties. The effect of various experimental factors was investigated to optimize the separations in the normal‐phase mode. It was found that the nature of polar modifier and additive in the mobile phase have significant impact on the enantioseparations. Better chiral recognition of analyzed compounds was achieved on (R)‐naphthylethyl carbamate cyclofructan 6 than on isopropyl carbamate cyclofructan 6 and dimethylphenyl carbamate cyclofructan 7. The thermodynamic parameters showed that the chiral separation was enthalpy controlled in all cases.  相似文献   

13.
The separation of enantiomers by chromatographic methods, such as gas chromatography, high‐performance liquid chromatography and capillary electrochromatography, has become an increasingly significant challenge over the past few decades due to the demand of pharmaceutical, agrochemical, and food analysis. Among these chromatographic resolution methods, high‐performance liquid chromatography based on chiral stationary phases has become the most popular and effective method used for the analytical and preparative separation of optically active compounds. This review mainly focuses on the recent development trends for novel chiral stationary phases based on chitosan derivatives, cyclofructan derivatives, and chiral porous materials that include metal‐organic frameworks and covalent organic frameworks in high‐performance liquid chromatography. The enantioseparation performance and chiral recognition mechanisms of these newly developed chiral selectors toward enantiomers are discussed in detail.  相似文献   

14.
The application of peptides in chiral separations using techniques such as capillary electrophoresis (CE), electrokinetic capillary chromatography (EKC) and liquid chromatography is the focus of this review. Methods for finding peptide selectors using combinatorial library approaches are discussed, as well as recent advances in the use of peptides as general chiral selectors for electrophoresis and liquid chromatography. One example shows the effectiveness of polymeric dipeptide surfactants as general chiral selectors for electrophoresis. Another example shows the versatility of oligoproline chiral stationary phases, exhibiting resolution for a number of racemic analytes comparable to other well-established chiral stationary phases.  相似文献   

15.
The use of capillary electrochromatography as a chiral separation technique for pharmaceutical applications is reviewed. Publications of the past 10 years that provide a potential practical application in pharmaceutical analysis are considered. Method development or validation, separation strategies, and potential routine analysis by the methods/applications cited are the main subjects on which we focused our attention. The indirect chiral separation method was only used once in CEC mode. In the direct chiral separations, the use of chiral stationary phases was obviously preferred over the use of chiral mobile phases with non-chiral stationary phases. Amongst the chiral stationary phases, those based on macrocyclic antibiotics and polysaccharide selectors were the most frequently used. Monolithic stationary phases also have several applications, but not so extended as those with packed capillary electrochromatography. The considered papers not only describe the applicability of the technique for relatively large sets of chiral analytes, they also showed that various types of stationary phases can be produced in-house in a simple manner. However, to survive as a mature separation technique, considerable time and effort are still needed to solve some disadvantages currently characterizing capillary electrochromatography.  相似文献   

16.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

17.
The development of effective chiral stationary phases (CSPs) and separation strategies for the liquid chromatographic (LC) resolution of enantiomers has been beneficial to many scientific disciplines. Over the last decade the number and type of CSPs has expanded tremendously. Not only have new classes of chiral selectors been introduced, but also many of the first CSPs have been changed and/or improved. The second or third generation of a CSP often can be different from the original. This can be confusing and intimidating to someone just entering the area of LC enantiomeric separations. Fortunately, all CSPs can be categorized in one or another of a few classes. There are generally one or two columns that can accomplish the majority of separations in each class. In this work we look at the different classes of CSPs and how they have expanded and changed over the last decade.  相似文献   

18.
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019–2020 of this rapidly developing field.  相似文献   

19.
New, pharmacologically interesting chiral amino compounds, namely, stereoisomers of α‐hydroxynaphthyl‐ß‐carboline, benz[d]azepine and benz[c]azepine analogs as well as N‐α‐hydroxynaphthylbenzyl‐substituted isoquinolines were enantioseparated by high‐performance liquid chromatographic and subcritical fluid chromatographic methods on polysaccharide‐based chiral stationary phases. Separation of the stereoisomers was optimized in both subcritical fluid chromatography and normal phase liquid chromatographic modes by investigating the effects of the composition of the bulk solvent, temperature, and the structures of the analytes and selectors. Both normal phase liquid chromatography and subcritical fluid chromatography exhibited satisfactory performance, albeit with somewhat different effectiveness in the separation of the stereoisomers studied. The optimized methods offer the possibility to apply preparative‐scale separations thereby enabling further pharmacological investigations of the enantiomers.  相似文献   

20.
The use of phosgene as a derivatizing agent for bifunctional compounds prior to gas and liquid chromatographic analysis is reviewed. Applications include gas chromatographic determinations of metoprolol and its metabolites in biological fluids, enantiomeric separations of beta-blocking drugs and sympathomimetic agents on a chiral stationary phase and liquid chromatographic enantiomer separations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号