首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionSilver nanoparticles (AgNPs) are of particular interest for their antibacterial properties and are produced by the action of reducing agents on silver ions. Curcumin from Curcuma longa (Zingiberaceae) has been used as a precursor for obtaining biogenic AgNPs, to act as a potential drug.ObjectivesThis study aimed to evaluate the toxicity of AgNPs synthesized with curcumin (Cur-AgNPs 0.081 mg/mL, ~130 nm) through the Salmonella/microsome (Ames test), one of the first required assays for evaluating toxicity.MethodsThe study design was experimental and in vitro. After defining the preliminary toxicity, the mutagenicity was assessed in a concentration range of 0.0010–0.0081 mg/plate Cur-AgNPs using histidine negative (His−) Salmonella Typhimurium strains TA97a, TA98, TA100, and TA102, with (+S9) and without metabolic activation (−S9), in triplicate. Assays were monitored by positive and negative controls. The results were statistically analyzed by Salanal software with p < 0.05 values considered significant.ResultsThe data obtained in the absence of metabolic activation showed that Cur-AgNPs is not mutagenic, but when exposed to the presence of S9, Cur-AgNPs became mutagenic to TA98 and TA100 strains, showing the significance of metabolizer enzymes to activate Cur-AgNPs on these bacteria, which recovered their abilities in synthesizing histidine (His+).ConclusionCur-AgNPs is mutagenic in the presence (+S9), but not in the absence (−S9) of metabolic activation, being able to act as indirect mutagens potentially to organisms that share the same genotype vulnerabilities found in TA98 and TA100 strains to cause a frameshift and base-pair substitution mutations, respectively.  相似文献   

2.
The fruit and pericarp of Zanthoxylum schinifolium (ZS) have been used in traditional medicine; however, few studies have characterized ZS fruit and pericarp. Therefore, in the present study, we evaluated the safety of ZS fruit (ZSF) and pericarp (ZSP) extracts and compared their bioactivity. To evaluate the safety of ZSF and ZSP, mutagenicity, cytotoxicity, and oxidative stress assays were performed and nontoxic concentration ranges were obtained. ZSP was found to be superior to ZSF in terms of its antimutagenic, antioxidant, and anti-inflammatory activities. In the S9 mix, the mutation inhibition rate of ZSP was close to 100% at concentrations exceeding 625 µg·plate−1 for both the TA98 and TA100 strains. ZSP exhibited efficient DPPH (IC50 = 75.6 ± 6.1 µg·mL−1) and ABTS (IC50 = 57.4 ± 6 µg·mL−1) scavenging activities. ZSP inhibited the release of cytokines, involved in IL-1β (IC50 = 134.4 ± 7.8), IL-6 (IC50 = 262.8 ± 11.2), and TNF-α (IC50 = 223.8 ± 5.8). These results indicate that ZSP contains a higher amount of biochemicals than ZSF, or that ZSP contains unique biochemicals. In conclusion, for certain physiological activities, the use of ZSP alone may be more beneficial than the combined use of ZSF and ZSP.  相似文献   

3.
Background: Tomato by-products contain a great variety of biologically active substances and represent a significant source of natural antioxidant supplements of the human diet. The aim of the work was to compare the antioxidant properties of a by-product from an ancient Tuscan tomato variety, Rosso di Pitigliano (RED), obtained by growing plants in normal conditions (-Ctr) or in drought stress conditions (-Ds) for their beneficial effects on vascular related dysfunction. Methods: The antioxidant activity and total polyphenol content (TPC) were measured. The identification of bioactive compounds of tomato peel was performed by HPLC. HUVEC were pre-treated with different TPC of RED-Ctr or RED-Ds, then stressed with H2O2. Cell viability, ROS production and CAT, SOD and GPx activities were evaluated. Permeation of antioxidant molecules contained in RED across excised rat intestine was also studied. Results: RED-Ds tomato peel extract possessed higher TPC than compared to RED-Ctr (361.32 ± 7.204 mg vs. 152.46 ± 1.568 mg GAE/100 g fresh weight). All extracts were non-cytotoxic. Two hour pre-treatment with 5 µg GAE/mL from RED-Ctr or RED-Ds showed protection from H2O2-induced oxidative stress and significantly reduced ROS production raising SOD and CAT activity (* p < 0.05 and ** p < 0.005 vs. H2O2, respectively). The permeation of antioxidant molecules contained in RED-Ctr or RED-Ds across excised rat intestine was high with non-significant difference between the two RED types (41.9 ± 9.6% vs. 26.6 ± 7.8%). Conclusions: RED-Ds tomato peel extract represents a good source of bioactive molecules, which protects HUVECs from oxidative stress at low concentration.  相似文献   

4.
Self-crosslinking of Tannic acid (TA) was accomplished to obtain poly(tannic acid) (p(TA)) particles in single step, surfactant free media using sodium periodate (NaIO4) as an oxidizing agent. Almost monodisperse p(TA) particles with 981 ± 76 nm sizes and −22 ± 4 mV zeta potential value with ellipsoidal shape was obtained. Only slight degradation of p(TA) particles with 6.8 ± 0.2% was observed at pH 7.4 in PBS up to 15 days because of the irreversible covalent formation between TA units, suggesting that hydrolytic degradation is independent from the used amounts of oxidation agents. p(TA) particles were found to be non-hemolytic up to 0.5 mg/mL concentration and found not to affect blood clotting mechanism up to 2 mg/mL concentration. Antioxidant activity of p(TA) particles was investigated by total phenol content (TPC), ferric reducing antioxidant potential (FRAP), trolox equivalent antioxidant capacity (TEAC), total flavanoid content (TFC), and Fe (II) chelating activity. p(TA) particles showed strong antioxidant capability in comparison to TA molecules, except FRAP assay. The antibacterial activity of p(TA) particles was investigated by micro-dilution technique on E. coli as Gram‑negative and S. aureus as Gram-positive bacteria and found that p(TA) particles are more effective on S. aureus with over 50% inhibition at 20 mg/mL concentration attained.  相似文献   

5.
Exposure to particulate matter (PM) is related to various respiratory diseases, and this affects the respiratory immune system. Alveolar macrophages (AMs), which are defenders against pathogens, play a key role in respiratory inflammation through cytokine production and cellular interactions. Coconut oil demonstrates antioxidant and anti-inflammatory properties, and it is consumed worldwide for improved health. However, reports on the protective effects of coconut oil on the PM-induced respiratory immune system, especially in AMs, are limited. In this study, we generated artificial PM (APM) with a diameter approximately of 30 nm by controlling the temperature, and compared its cytotoxicity with diesel exhaust particles (DEP). We also investigated the antioxidant and anti-inflammatory effects of coconut oil in APM– and DEP–stimulated AMs, and the underlying molecular mechanisms. Our results showed that APM and DEP had high cytotoxicity in a dose-dependent manner in AMs. In particular, APM or DEP at 100 μg/mL significantly decreased cell viability (p < 0.05) and significantly increased oxidative stress markers such as reactive oxygen species (p < 0.01); the GSSH/GSH ratio (p < 0.01); and cytokine production, such as tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), and IL-6 (p < 0.001). The expression of the genes for chemokine (C-X-C motif) ligand-1 (p < 0.05) and monocyte chemoattractant protein-1 (p < 0.001); and the proteins toll-like receptor (TLR) 4 (p < 0.01), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (p < 0.001), p38 (p < 0.001); and extracellular receptor-activated kinase (p < 0.001), were also upregulated by PM. These parameters were reversed upon treatment with coconut oil in APM– or DEP–stimulated AMs. In conclusion, coconut oil can reduce APM– or DEP–induced inflammation by regulating the TLR4/MAPK pathway in AMs, and it may protect against adverse respiratory effects caused by PM exposure.Exposure to particulate matter (PM) is related to various respiratory diseases, and this affects the respiratory immune system. Alveolar macrophages (AMs), which are defenders against pathogens, play a key role in respiratory inflammation through cytokine production and cellular interactions. Coconut oil demonstrates antioxidant and anti-inflammatory properties, and it is consumed worldwide for improved health. However, reports on the protective effects of coconut oil on the PM-induced respiratory immune system, especially in AMs, are limited. In this study, we generated artificial PM (APM) with a diameter approximately of 30 nm by controlling the temperature, and compared its cytotoxicity with diesel exhaust particles (DEP). We also investigated the antioxidant and anti-inflammatory effects of coconut oil in APM– and DEP–stimulated AMs, and the underlying molecular mechanisms. Our results showed that APM and DEP had high cytotoxicity in a dose-dependent manner in AMs. In particular, APM or DEP at 100 μg/mL significantly decreased cell viability (p < 0.05) and significantly increased oxidative stress markers such as reactive oxygen species (p < 0.01); the GSSH/GSH ratio (p < 0.01); and cytokine production, such as tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), and IL-6 (p < 0.001). The expression of the genes for chemokine (C-X-C motif) ligand-1 (p < 0.05) and monocyte chemoattractant protein-1 (p < 0.001); and the proteins toll-like receptor (TLR) 4 (p < 0.01), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (p < 0.001), p38 (p < 0.001); and extracellular receptor-activated kinase (p < 0.001), were also upregulated by PM. These parameters were reversed upon treatment with coconut oil in APM– or DEP–stimulated AMs. In conclusion, coconut oil can reduce APM– or DEP–induced inflammation by regulating the TLR4/MAPK pathway in AMs, and it may protect against adverse respiratory effects caused by PM exposure.  相似文献   

6.
Anneslea fragrans Wall., commonly known as “Pangpo Tea”, is traditionally used as a folk medicine and healthy tea for the treatment of liver and intestine diseases. The aim of this study was to purify the antioxidative and cytoprotective polyphenols from A. fragrans leaves. After fractionation with polar and nonpolar organic solvents, the fractions of aqueous ethanol extract were evaluated for their total phenolic (TPC) and flavonoid contents (TFC) and antioxidant activities (DPPH, ABTS, and FRAP assays). The n-butanol fraction (BF) showed the highest TPC and TFC with the strongest antioxidant activity. The bio-guided chromatography of BF led to the purification of six flavonoids (1–6) and one benzoquinolethanoid (7). The structures of these compounds were determined by NMR and MS techniques. Compound 6 had the strongest antioxidant capacity, which was followed by 5 and 2. The protective effect of the isolated compounds on hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells revealed that the compounds 5 and 6 exhibited better protective effects by inhibiting ROS productions, having no significant difference with vitamin C (p > 0.05), whereas 6 showed the best anti-apoptosis activity. The results suggest that A. fragrans could serve as a valuable antioxidant phytochemical source for developing functional food and health nutraceutical products.  相似文献   

7.
Chemical investigation of root bark of Glycosmis pentaphylla and stem bark of Tabernaemontana coronaria led to the isolation of three carbazole alkaloids glycozoline, glycozolidine and methyl carbazole 3-carboxylate, two furoquinoline alkaloids skimmianine and dictamine, an acridone alkaloid arborinine, three monomeric indole alkaloids coronaridine, 10-methoxy coronaridine and tabernaemontanine, and two dimeric indole alkaloids voacamine and tabernaelegantine B. Their structures were established by detailed spectral analysis. Mutagenic and antimutagenic potential of methanol extract of both plant materials were evaluated by Ames test against known positive mutagens 2-aminofluorine, 4-nitro-O-phenylenediamine and sodium azide using Salmonella typhimurium TA 98 and TA 100 bacterial strains both in the presence and absence of S9. Both the extracts were non-mutagenic in nature. Both the extracts of G. pentaphylla and T. coronaria exhibited significant antimutagenic activity against NPD and sodium azide for S. typhimurium TA98 and TA100 strains. The results indicated that the extracts could counteract the mutagenicity induced by different genotoxic compounds.  相似文献   

8.
Abstract

Comparative Molecular Field Analysis (CoMFA) was applied to a comprehensive data set of heterogeneous nitroaromatics tested in Salmonella typhimurium TA98 and TA100 with and without S9 microsomal activation. The four CoMFA models developed agree with postulated mechanisms of mutagenicity, and explain over 70% of the corresponding mutagenic variance. The standard deviation coefficient contours common in the four models included high electronic density regions equivalent to C4-C5 in the pyrene ring, and an electron deficient site equivalent to C6. These areas are associated with high mutagenicity. Electron deficient areas may be related with the nitroreductive bioactivation of nitroaromatics. Electron rich sites may be involved with oxidative mechanisms analogous to the bioactivation pathway of polycyclic aromatic hydrocarbons. The contribution of steric factors to mutagenicity follows the order TA98 + S9 > TA98 > TA100 + S9 > TA100. The models indicated that increasing bulk perpendicular to the aromatic plane would decrease mutagenicity, but increasing the aromatic ring system along a region corresponding to C6-C7 in 1-nitropyrene would increase mutagenicity.  相似文献   

9.
Oxidative stress in aquatic organisms might suppress the immune system and propagate infectious diseases. This study aimed to investigate the protective effect of polyphenolic extracts from spent coffee grounds (SCG) against oxidative stress, induced by H2O2, in C. viridis brain cells, through an in vitro model. Hydrophilic extracts from SCG are rich in quinic, ferulic and caffeic acids and showed antioxidant capacity in DPPH, ORAC and FRAP assays. Furthermore, pretreatment of C. viridis brain cells with the polyphenolic extracts from SCG (230 and 460 µg/mL) for 24 h prior to 100 µM H2O2 exposure (1 h) significantly increased antioxidant enzymes activity (superoxide dismutase and catalase) and reduced lipid peroxidation (measured by MDA levels). These results suggest that polyphenols found in SCG extracts exert an antioxidative protective effect against oxidative stress in C. viridis brain cells by stimulating the activity of SOD and CAT.  相似文献   

10.
Natural flavonoids, in addition to some of their synthetic derivatives, are recognized for their remarkable medicinal properties. The present study was designed to investigate the in vitro antioxidant and in vivo antistress effect of synthetic flavonoids (flavones and flavonols) in mice, where stress was induced by injecting acetic acid and physically through swimming immobilization. Among the synthesized flavones (F1–F6) and flavonols (OF1–OF6), the mono para substituted methoxy containing F3 and OF3 exhibited maximum scavenging potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) with IC50 of 31.46 ± 1.46 μg/mL and 25.54 ± 1.21 μg/mL, respectively. Minimum antioxidant potential was observed for F6 and OF6 with IC50 values of 174.24 ± 2.71 μg/mL and 122.33 ± 1.98 μg/mL, respectively, in comparison with tocopherol. The ABTS scavenging activity of all the synthesized flavones and flavonols were significantly higher than observed with DPPH assay, indicating their potency as good antioxidants and the effectiveness of ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) assay in evaluating antioxidant potentials of chemical substances. The flavonoids-treated animals showed a significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) reduction in the number of writhes and an increase in swimming endurance time. Stressful conditions changed plasma glucose, cholesterol and triglyceride levels, which were used as markers when evaluating stress in animal models. The level of these markers was nearly brought to normal when pre-treated with flavones and flavonols (10 mg/kg) for fifteen days in experimental animals. These compounds also considerably reduced the levels of lipid peroxidation (TBARS: Thiobarbituric acid reactive substances), which was significant (* p < 0.05, ** p < 0.01 and *** p < 0.001, n = 8) compared to the control group. A significant rise in the level of catalase and SOD (super oxide dismutase) was also observed in the treated groups. Diazepam (2 mg/kg) was used as the standard drug. Additionally, the flavonoids markedly altered the weight of the adrenal glands, spleen and brain in stress-induced mice. The findings of the study suggest that these flavonoids could be used as a remedy for stress and are capable of ameliorating diverse physiological and biochemical alterations associated with stressful conditions. However, further experiments are needed to confirm the observed potentials in other animal models, especially in those with a closer resemblance to humans. Toxicological evaluations are also equally important.  相似文献   

11.
Dihetaryldimethylsilanes and dihetarylmethanes containing indeno[2,1-b]indolyl and indeno[2,1-b]pyrrolyl fragments were synthesized. Their mutagenic activity was tested according to Ames with standard test strains Salmonella typhimurium TA 1537, TA 98, and TA 100.  相似文献   

12.
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.  相似文献   

13.
Most of the health benefits derived from cereals are attributed to their bioactive compounds. This study evaluated the levels of the bioactive compounds, and the antioxidant and starch-hydrolyzing enzymes inhibitory properties of six pipeline Striga-resistant yellow-orange maize hybrids (coded AS1828-1, 4, 6, 8, 9, 11) in vitro. The maize hybrids were grown at the International Institute of Tropical Agriculture (IITA), Nigeria. The bioactive compounds (total phenolics, tannins, flavonoids, and phytate) levels, antioxidant (DPPH and ABTS•+ scavenging capacity and reducing power) and starch-hydrolyzing enzymes (α-amylase and α-glucosidase) inhibitory activities of the maize hybrids were determined by spectrophotometry. At the same time, carotenoids were quantified using a reverse-phase HPLC system. The ranges of the bioactive compounds were: 11.25–14.14 mg GAE/g (total phenolics), 3.62–4.67 mg QE/g (total flavonoids), 3.63–6.29 mg/g (tannins), 3.66–4.31% (phytate), 8.92–12.11 µg/g (total xanthophylls), 2.42–2.89 µg/g (total β-carotene), and 3.17–3.77 µg/g (total provitamin A carotenoids). Extracts of the maize hybrids scavenged DPPH (SC50: 9.07–26.35 mg/mL) and ABTS•+ (2.65–7.68 TEAC mmol/g), reduced Fe3+ to Fe2+ (0.25 ± 0.64–0.43 ± 0.01 mg GAE/g), and inhibited α-amylase and α-glucosidase, with IC50 ranges of 26.28–52.55 mg/mL and 47.72–63.98 mg/mL, respectively. Among the six clones of the maize hybrids, AS1828-9 had the highest (p < 0.05) levels of tannins and phytate and the strongest antioxidant and starch-hydrolyzing enzymes inhibitory activities. Significant correlations were observed between total phenolics and the following: ABTS•+ (p < 0.01, r = 0.757), DPPH SC50 (p < 0.01, r = −0.867), reducing power (p < 0.05, r = 0.633), α-amylase IC50 (p < 0.01, r = −0.836) and α-glucosidase IC50 (p < 0.05, r = −0.582). Hence, the Striga-resistant yellow-orange maize hybrids (especially AS1828-9) may be beneficial for alleviating oxidative stress and postprandial hyperglycemia.  相似文献   

14.
In this study, the lactobacillus fermentation process of pomegranate (Punica granatum L.) peel and Schisandra chinensis (Turcz.) Baill (PP&SC) was optimized by using the response surface method (RSM) coupled with a Box-Behnken design. The optimum fermentation condition with the maximal yield of ellagic acid (99.49 ± 0.47 mg/g) was as follows: 1:1 (w:w) ratio of pomegranate peel to Schisandra chinensis, 1% (v:v) of strains with a 1:1 (v:v) ratio of Lactobacillus Plantarum to Streptococcus Thermophilus, a 37 °C fermentation temperature, 33 h of fermentation time, 1:20 (g:mL) of a solid–liquid ratio and 3 g/100 mL of a glucose dosage. Under these conditions, the achieved fermentation broth (FB) showed stronger free radical scavenging abilities than the water extract (WE) against the ABTS+, DPPH, OH and O2 radicals. The cytotoxicity and the protective effect of FB on the intracellular ROS level in HaCaT cells were further detected by the Cell Counting Kit-8 (CCK-8) assay. The results showed that FB had no significant cytotoxicity toward HaCaT cells when its content was no more than 8 mg/mL. The FB with a concentration of 8 mg/mL had a good protective effect against oxidative damage, which can effectively reduce the ROS level to 125.94% ± 13.46% (p < 0.001) compared with 294.49% ± 11.54% of the control group in H2O2-damaged HaCaT cells. The outstanding antioxidant ability and protective effect against H2O2-induced oxidative damage in HaCaT cells promote the potential for the FB of PP&SC as a functional raw material of cosmetics.  相似文献   

15.
Information concerning the mechanisms underlying oxidative stress and low-grade inflammation in young healthy women predisposing eventually to future diseases is scarce. We investigated the relationship of oxidative stress and high-sensitivity C-reactive protein (hsCRP) in fertile-age women by oral combined contraceptive (OC) use. Caucasian Italian healthy non-obese women (n = 290; 100 OC-users; 190 non-OC-users; mean age 23.2 ± 4.7 years) were analyzed. Blood hydroperoxides, as oxidative stress biomarkers, were assessed by Free Oxygen Radical Test (FORT). Serum hsCRP was determined by an ultra-sensitive method (hsCRP). Markedly elevated oxidative stress (≥400 FORT Units) was found in 77.0% of OC-users and 1.6% of non-OC-users, odds ratio (OR) = 209, 95% CI = 60.9–715.4, p < 0.001. Elevated hsCRP levels ≥ 2.0 mg/L, considered risky for cardiovascular diseases (CVDs), were found in 41.0% of OC-users and 9.5% of non-OC-users, OR = 6.6, 95%CI 3.5–12.4, p < 0.001. Hydroperoxides were strongly positively correlated to hsCRP in all women (rs = 0.622, p < 0.001), in OC-users (rs = 0.442, p < 0.001), and in non-OC-users (rs = 0.426, p < 0.001). Women with hydroperoxides ≥ 400 FORT Units were eight times as likely to have hsCRP ≥ 2 mg/L. In non-OC-users only, hydroperoxides values were positively correlated with weight and body mass index, but negatively correlated with red meat, fish and chocolate consumption. Our research is the first finding a strong positive correlation of serum hydroperoxides with hsCRP, a marker of low-grade chronic inflammation, in young healthy women. Further research is needed to elucidate the potential role of these two biomarkers in OC-use associated side-effects, like thromboembolism and other CVDs.  相似文献   

16.
Baccharis dracunculifolia is a plant native from Brazil, commonly known as 'Alecrim-do-campo' and 'Vassoura' and used in alternative medicine for the treatment of inflammation, hepatic disorders and stomach ulcers. Previous studies reported that artepillin C (ArtC, 3-{4-hydroxy-3,5-di(3-methyl-2-butenyl)phenyl}-2(E)-propenoic acid), is the main compound of interest in the leaves. This study was undertaken to assess the mutagenic effect of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE: 11.4-182.8 μg/plate) and ArtC (0.69-10.99 μg/plate) by the Ames test using Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and to compare the protective effects of Bd-EAE and ArtC against the mutagenicity of a variety of direct and indirect acting mutagens such as 4-nitro-O-phenylenediamine, sodium azide, mitomycin C, benzo[a]pyrene, aflatoxin B1, 2-aminoanthracene and 2-aminofluorene.The mutagenicity test showed that Bd-EAE and ArtC did not induce an increase in the number of revertant colonies indicating absence of mutagenic activity. ArtC showed a similar antimutagenic effect to that of Bd-EAE in some strains of S. typhimurium, demonstrating that the antimutagenic activity of Bd-EAE can be partially attributed to ArtC. The present results showed that the protective effect of whole plant extracts is due to the combined and synergistic effects of a complex mixture of phytochemicals, the total activity of which may result in health benefits.  相似文献   

17.
Pleurotus geesteranus is a promising source of bioactive compounds. However, knowledge of the antioxidant behaviors of P. geesteranus protein hydrolysates (PGPHs) is limited. In this study, PGPHs were prepared with papain, alcalase, flavourzyme, pepsin, and pancreatin, respectively. The antioxidant properties and cytoprotective effects against oxidative stress of PGPHs were investigated using different chemical assays and H2O2 damaged PC12 cells, respectively. The results showed that PGPHs exhibited superior antioxidant activity. Especially, hydrolysate generated by alcalase displayed the strongest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (91.62%), 2,2-azino-bis (3-ethylbenzothia zoline-6-sulfonic acid) (ABTS) radical scavenging activity (90.53%), ferric reducing antioxidant power, and metal ion-chelating activity (82.16%). Analysis of amino acid composition revealed that this hydrolysate was rich in hydrophobic, negatively charged, and aromatic amino acids, contributing to its superior antioxidant properties. Additionally, alcalase hydrolysate showed cytoprotective effects on H2O2-induced oxidative stress in PC12 cells via diminishing intracellular reactive oxygen species (ROS) accumulation by stimulating antioxidant enzyme activities. Taken together, alcalase hydrolysate of P. geesteranus protein can be used as beneficial ingredients with antioxidant properties and protective effects against ROS-mediated oxidative stress.  相似文献   

18.
The aim of the present study was to evaluate the potential protective effect of glutathione (GSH) on Escherichia coli cells grown in a high concentration of thymoquinone (TQ). This quinone, as the main active compound of Nigella sativa seed oil, exhibits a wide range of biological activities. At low concentrations, it acts as an antioxidant, and at high concentrations, an antimicrobial agent. Therefore, any interactions between thymoquinone and glutathione are crucial for cellular defense against oxidative stress. In this study, we found that GSH can conjugate with thymoquinone and its derivatives in vitro, and only fivefold excess of GSH was sufficient to completely deplete TQ and its derivatives. We also carried out studies on cultures of GSH-deficient Escherichia coli strains grown on a minimal medium in the presence of different concentrations of TQ. The strains harboring mutations in gene ΔgshA and ΔgshB were about two- and fourfold more sensitive (256 and 128 µg/mL, respectively) than the wild type. It was also revealed that TQ concentration has an influence on reactive oxygen species (ROS) production in E. coli strains—at the same thymoquinone concentration, the level of ROS was higher in GSH-deficient E. coli strains than in wild type.  相似文献   

19.
The purpose of this study was to investigate the major flavonoids content and bioactivities of Tartary buckwheat sprouts. The crude methanol extract (ME) of Tartary buckwheat sprouts was abundant in flavonoids, and six major flavonoids, including isoorientin, vitexin, isovitexin, rutin, quercetin, and kaemferol were successfully determined from the sprouts by the high-performance liquid chromatography (HPLC) method. Generally, the flavonoid content of buckwheat sprouts was in the order of rutin > quercetin > isovitexin > vitexin> isoorientin > kaemferol. The highest rutin content of the ME and sprout cultures was 89.81 mg/g and 31.50 mg/g, respectively. Antibacterial activity results indicated the ME displayed notable inhibitory activity against the five tested bacteria, and its minimum inhibitory concentration (MIC) values ranged from 0.8 mg/mL to 3.2 mg/mL. Among the six flavonoids, quercetin was the most active compound, which exhibited strong activity against all tested bacteria except for E. coli and S. epidermidis, with its MIC values ranging from 0.2 mg/mL to 0.4 mg/mL. For the antifungal activity assay, the ME of Tartary buckwheat sprouts and four flavonoids could significantly inhibit the spore germination of two pathogenic fungi, and their inhibitory efficiency was concentration dependent. Quercetin was the most active one, which significantly inhibited the spore germination of F. oxysporum f. sp. vasinfectum and F. oxysporum f. sp. cucumerinum, and its median effective inhibitory concentration (IC50) value was 42.36 and 32.85 µg/mL, respectively. The antioxidant activity results showed that quercetin, kaemferol, and rutin displayed excellent antioxidant activity in the DPPH radical scavenging test, and their IC50 value was calculated as 5.60, 16.23, and 27.95 µg/mL, respectively. This is the first report on the antimicrobial activity of the crude extract of Tartary buckwheat sprouts. These results indicated that the methanol extract of Tartary buckwheat sprouts could be used as a potential antimicrobial or antioxidant agent in the future.  相似文献   

20.
In our in vitro and in vivo studies, we used Acalypha indica root methanolic extract (AIRME), and investigated their free radical scavenging/antioxidant and anti-inflammatory properties. Primarily, phytochemical analysis showed rich content of phenols (70.92 mg of gallic acid/g) and flavonoids (16.01 mg of rutin/g) in AIRME. We then performed HR-LC-MS and GC-MS analyses, and identified 101 and 14 phytochemical compounds, respectively. Among them, ramipril glucuronide (1.563%), antimycin A (1.324%), swietenine (1.134%), quinone (1.152%), oxprenolol (1.118%), choline (0.847%), bumetanide (0.847%) and fenofibrate (0.711%) are the predominant phytomolecules. Evidence from in vitro studies revealed that AIRME scavenges DPPH and hydroxyl radicals in a concentration dependent manner (10–50 μg/mL). Similarly, hydrogen peroxide and lipid peroxidation were also remarkably inhibited by AIRME as concentration increases (20–100 μg/mL). In vitro antioxidant activity of AIRME was comparable to ascorbic acid treatment. For in vivo studies, carrageenan (1%, sub-plantar) was injected to rats to induce localized inflammation. Acute inflammation was represented by paw-edema, and significantly elevated (p < 0.05) WBC, platelets and C-reactive protein (CRP). However, AIRME pretreatment (150/300 mg/kg bodyweight) significantly (p < 0.05) decreased edema volume. This was accompanied by a significant (p < 0.05) reduction of WBC, platelets and CRP with both doses of AIRME. The decreased activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in paw tissue were restored (p < 0.05 / p < 0.01) with AIRME in a dose-dependent manner. Furthermore, AIRME attenuated carrageenan-induced neutrophil infiltrations and vascular dilation in paw tissue. For the first time, our findings demonstrated the potent antioxidant and anti-inflammatory properties of AIRME, which could be considered to develop novel anti-inflammatory drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号