首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A common feature of multi-functional metal–organic frameworks is a metal dimer in the form of a paddlewheel, as found in the structure of Cu3(btc)2 (HKUST-1). The HKUST-1 framework demonstrates exceptional gas storage, sensing and separation, catalytic activity and, in recent studies, unprecedented ionic and electrical conductivity. These results are a promising step towards the real-world application of metal–organic materials. In this perspective, we discuss progress in the understanding of the electronic, magnetic and physical properties of HKUST-1, representative of the larger family of Cu···Cu containing metal–organic frameworks. We highlight the chemical interactions that give rise to its favourable properties, and which make this material well suited to a range of technological applications. From this analysis, we postulate key design principles for tailoring novel high-performance hybrid frameworks.  相似文献   

2.
The syntheses, spectral UV–Vis, NMR, and electrochemical as well as photocatalytic properties of novel magnesium(II) and zinc(II) symmetrical sulfanyl porphyrazines with 2-(morpholin-4-yl)ethylsulfanyl peripheral substituents are presented. Both porphyrazine derivatives were synthesized in cyclotetramerization reactions and subsequently embedded on the surface of commercially available P25 titanium(IV) oxide nanoparticles. The obtained macrocyclic compounds were broadly characterized by ESI MS spectrometry, 1D and 2D NMR techniques, UV–Vis spectroscopy, and subjected to electrochemical studies. Both hybrid materials, consisting of porphyrazine derivatives embedded on the titanium(IV) oxide nanoparticles’ surface, were characterized in terms of particle size and distribution. Next, they were subjected to photocatalytic studies with 1,3-diphenylisobenzofuran, a known singlet oxygen quencher. The applicability of the obtained hybrid material consisting of titanium(IV) oxide P25 nanoparticles and magnesium(II) porphyrazine derivative was assessed in photocatalytic studies with selected active pharmaceutical ingredients, such as diclofenac sodium salt and ibuprofen.  相似文献   

3.
Rosmarinus officinalis L. is a widely known species for its medicinal uses, that is also used as raw material for the food and cosmetic industry. The aim of the present study was to offer a novel perspective on the medicinal product originating from this species and to test its hepatoprotective activity. The tested sample consisted in a tincture obtained from the fresh young shoots. Compounds that are evaluated for this activity are polyphenols and terpenoids, that are identified and quantified by HPLC–UV–MS and GC–MS. Antioxidant activity was assessed in vitro, using the DPPH, FRAP and SO assays. Hepatoprotective activity was tested in rats with experimentally-induced hepatotoxicity. In the chemical composition of the tincture, phenolic diterpenes (carnosic acid, carnosol, rosmanol, rosmadial) and rosmarinic acid were found to be the majority compounds, alongside with 1,8-cineole, camphene, linalool, borneol and terpineol among monoterpenes. In vitro, the tested tincture proved significant antioxidant capacity. Results of the in vivo experiment showed that hepatoprotective activity is based on an antioxidant mechanism. In this way, the present study offers a novel perspective on the medicinal uses of the species, proving significant amounts of polyphenols and terpenes in the composition of the fresh young shoots tincture, that has proved hepatoprotective activity through an antioxidant mechanism.  相似文献   

4.
The development of photothermal materials with a high light-to-heat conversion capability is essential for the utilization of clean solar energy. In this work, we demonstrate the use of a novel and sustainable concept involving cellulose liquefaction, rapid gelation, in situ synthesis and hot-press drying to convert cellulose and metal–organic framework (Prussian blue) into a stable photothermal bioplastic that can harvest sunlight and convert it into mechanical motion. As expected, the obtained Prussian blue@cellulose bioplastic (PCBP) can effectively absorb sunlight and the surface can be heated up to 70.3 °C under one sun irradiation (100 mW cm−2). As a demonstration of the practicality of PCBP, it was successfully used to drive a Stirling engine motion. Meanwhile, hot-pressing promotes the densification of the structure of PCBP and, therefore, improves the resistance to the penetration of water/non-aqueous liquids. Moreover, PCBP shows good mechanical properties and thermal stability. Given the excellent photothermal performance and environmentally friendly features of photothermal conversion bioplastic, we envisage this sustainable plastic film could play important roles toward diversified applications: a photothermal layer for thermoelectric generator, agricultural films for soil mulching and photothermal antibacterial activity, among others.  相似文献   

5.
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R–POM1–R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2–R–POM1–R–POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson–Evans {XMo6} (X = Cr or Al) and trisubstituted Wells–Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.

A versatile modular approach has been developed for incorporating different metal-oxo nanoclusters with characteristic structures into a single hybrid molecule by covalently linking them with polyol ligands.  相似文献   

6.
A hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4-anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows that the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Overall, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.  相似文献   

7.
Two mass-accommodation methods are proposed to describe the melting of paraffin wax used as a phase-change material in a centrally heated annular region. The two methods are presented as models where volume changes produced during the phase transition are incorporated through total mass conservation. The mass of the phase-change material is imposed as a constant, which brings an additional equation of motion. Volume changes in a cylindrical unit are pictured in two different ways. On the one hand, volume changes in the radial direction are proposed through an equation of motion where the outer radius of the cylindrical unit is promoted as a dynamical variable of motion. On the other hand, volume changes along the axial symmetry axis of the cylindrical unit are proposed through an equation of motion, where the excess volume of liquid constitutes the dynamical variable. The energy–mass balance at the liquid–solid interface is obtained according to each method of conceiving volume changes. The resulting energy–mass balance at the interface constitutes an equation of motion for the radius of the region delimited by the liquid–solid interface. Subtle differences are found between the equations of motion for the interface. The differences are consistent with mass conservation and local mass balance at the interface. Stationary states for volume changes and the radius of the region delimited by the liquid–solid interface are obtained for each mass-accommodation method. We show that the relationship between these steady states is proportional to the relationship between liquid and solid densities when the system is close to the high melting regime. Experimental tests are performed in a vertical annular region occupied by a paraffin wax. The boundary conditions used in the experimental tests produce a thin liquid layer during a melting process. The experimental results are used to characterize the phase-change material through the proposed models in this work. Finally, the thermodynamic properties of the paraffin wax are estimated by minimizing the quadratic error between the temperature readings within the phase-change material and the temperature field predicted by the proposed model.  相似文献   

8.
In the present study, the interfacial behavior of overmolded hybrid fiber reinforced polypropylene composites (hybrid composites) in the working temperature range from 23 °C to 90 °C was studied by experimental and constitutive methods. Monotonic and cycle loading-unloading single-lap-shear tests were employed to determine the interfacial properties of hybrid composites. The experimental results show that both interfacial shear strength and shear stiffness decrease with increasing working temperature. A regression function was adopted to evaluate the decaying degree of interfacial properties with increasing working temperature. The shear stress-displacement relationship under monotonic loading exhibits nonlinear behavior after an initial elastic region. The envelope lines of shear stress-displacement of hybrid composites under cyclic loading indicate that the nonlinearity in the curve is caused by the plastic deformation of polypropylene in the interphase region. A constitutive model was built to describe the nonlinear shear stress-displacement relation of hybrid composites at different working temperatures. A full suite of temperature-dependent plastic parameters in the model was obtained from cyclic loading-unloading tensile tests. The predicted shear stress–displacement curves agreed well with experimental results from different working temperatures. In addition, the failure mode of hybrid composites varied with working temperature.  相似文献   

9.
Graphene–metal composites have potential as novel catalysts due to their unique electrical properties. Here, we report the synthesis of a composite material comprised of monodispersed platinum nanoparticles on high-quality graphene obtained by using two different exfoliation techniques. The material, prepared via an easy, low-cost and reproducible procedure, was evaluated as an electrocatalyst for the hydrogen evolution reaction. The turnover frequency at zero overpotential (TOF0 in 0.1 m phosphate buffer, pH 6.8) was determined to be approximately 4600 h−1. This remarkably high value is likely due to the optimal dispersion of the platinum nanoparticles on the graphene substrate, which enables the material to be loaded with only very small amounts of the noble metal (i.e., Pt) despite the very highly active surface. This study provides a new outlook on the design of novel materials for the development of robust and scalable water-splitting devices.  相似文献   

10.
Carvone is a monoterpene compound that has been widely used as a pesticide for more than 10 years. However, little is known regarding the fate of carvone, or its degradation products, in the environment. We used GC-MS (gas chromatography–mass spectrometry) to study the fate of carvone and its degradation and photolysis products under different soil and light conditions. We identified and quantified three degradation products of carvone in soil and water samples: dihydrocarvone, dihydrocarveol, and carvone camphor. In soil, dihydrocarveol was produced at very low levels (≤0.067 mg/kg), while dihydrocarvone was produced at much higher levels (≤2.07 mg/kg). In water exposed to differing light conditions, carvone was degraded to carvone camphor. The photolysis rate of carvone camphor under a mercury lamp was faster, but its persistence was lower than under a xenon lamp. The results of this study provide fundamental data to better understand the fate and degradation of carvone and its metabolites in the environment.  相似文献   

11.
Wastewater treatment (WWT) is a priority around the world; conventional treatments are not widely used in rural areas owing to the high operating and maintenance costs. In Mexico, for instance, only 40% of wastewater is treated. One sustainable option for WWT is through the use of constructed wetlands (CWs) technology, which may remove pollutants using cells filled with porous material and vegetation that works as a natural filter. Knowing the optimal material and density of plants used per square meter in CWs would allow improving their WWT effect. In this study, the effect of material media (plastic/mineral) and plant density on the removal of organic/inorganic pollutants was evaluated. Low (three plants), medium (six plants) and high (nine plants) densities were compared in a surface area of 0.3 m2 of ornamental plants (Alpinia purpurata, Canna hybrids and Hedychium coronarium) used in polycultures at the mesocosm level of household wetlands, planted on the two different substrates. Regarding the removal of contaminants, no significant differences were found between substrates (p ≥ 0.05), indicating the use of plastic residues (reusable) is an economical option compared to typical mineral materials. However, differences (p = 0.001) in removal of pollutants were found between different plant densities. For both substrates, the high density planted CWs were able to remove COD in a range of 86–90%, PO4-P 22–33%, NH4-N in 84–90%, NO3-N 25–28% and NO2-N 38–42%. At medium density, removals of 79–81%, 26–32, 80–82%, 24–26%, and 39–41%, were observed, whereas in CWs with low density, the detected removals were 65–68%, 20–26%, 79–80%, 24–26% and 31–40%, respectively. These results revealed that higher COD and ammonia were removed at high plant density than at medium or low densities. Other pollutants were removed similarly in all plant densities (22–42%), indicating the necessity of hybrid CWs to increase the elimination of PO4-P, NO3-N and NO2-N. Moreover, high density favored 10 to 20% more the removal of pollutants than other plant densities. In addition, in cells with high density of plants and smaller planting distance, the development of new plant shoots was limited. Thus, it is suggested that the appropriate distance for this type of polyculture plants should be from 40 to 50 cm in expansion to real-scale systems in order to take advantage of the harvesting of species in these and allow species of greater foliage, favoring its growth and new shoots with the appropriate distance to compensate, in the short time, the removal of nutrients.  相似文献   

12.
Natural gecko array wearless dynamic friction has recently been reported for 30,000 cycles on a smooth substrate. Following these findings, stiff polymer gecko-inspired synthetic adhesives have been proposed for high-cycle applications such as robot feet. Here we examine the behavior of high-density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with a normal preload of less than 40 kPa. We find that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing a marked plastic deformation of fiber tips. This deformation could be due to shear-induced plastic creep of the fiber tips from high adhesion forces, adhesive wear, or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko.  相似文献   

13.
Cryogels are novel materials because the manufacturing process known as cryostructuring allows biopolymers to change their properties as a result of repeated controlled freeze–thaw cycles. Hydrogels of xanthan and karaya gums were evaluated after undergoing up to four controlled freeze–thaw cycles in indirect contact with liquid nitrogen (up to −150 °C) to form cryogels. Changes in structural, molecular, rheological, and thermal properties were evaluated and compared to those of their respective hydrogels. Samples were also analyzed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR), Rotational Rheology (RR), Modulated Differential Scanning Calorimetry (MDSC) and zeta potential (ζ). In general, significant differences (p < 0.05) between the numbers of freeze–thaw cycles were found. Karaya cryogels were not stable to repeated cycles of cryostructuring such as the three-cycle xanthan cryogel, which has the best structural order (95.55%), molecular interactions, and thermal stability, which allows the generation of a novel material with improved thermal and structural properties that can be used as an alternative in food preservation.  相似文献   

14.
It is extremely difficult to precisely edit a surface site on a typical nanoparticle catalyst without changing other parts of the catalyst. This precludes a full understanding of which site primarily determines the catalytic properties. Here, we couple experimental data collection with theoretical analysis to correlate rich structural information relating to atomically precise gold clusters with the catalytic performance for the click reaction of phenylacetylene and benzyl azide. We also identify a specific surface site that is capable of achieving high regioselectivity. We further conduct site-specific editing on a thiolate-protected gold cluster by peeling off two monomeric RS–Au–SR motifs and replacing them with two Ph2P–CH2–PPh2 staples. We demonstrate that the surface Au–Ph2P–CH2–PPh2–Au motifs enable extraordinary regioselectivity for the click reaction of alkyne and azide. The editing strategy for the surface motifs allows us to exploit previously inaccessible individual active sites and elucidate which site can explicitly govern the reaction outcome.

Editing surface motifs on gold cluster catalysts achieves high regioselectivity for the click reactions of azides and alkynes.  相似文献   

15.
Harvesting energy and converting it into mechanical motion forms the basis for both natural and artificial molecular motors. Overcrowded alkene-based light-driven rotary motors are powered through sequential photochemical and thermal steps. The thermal helix inversion steps are well characterised and can be manipulated through adjustment of the chemical structure, however, the insights into the photochemical isomerisation steps still remain elusive. Here we report a novel oxindole-based molecular motor featuring pronounced electronic push–pull character and a four-fold increase of the photoisomerization quantum yield in comparison to previous motors of its class. A multidisciplinary approach including synthesis, steady-state and transient absorption spectroscopies, and electronic structure modelling was implemented to elucidate the excited state dynamics and rotary mechanism. We conclude that the charge-transfer character of the excited state diminishes the degree of pyramidalisation at the alkene bond during isomerisation, such that the rotational properties of this oxindole-based motor stand in between the precessional motion of fluorene-based molecular motors and the axial motion of biomimetic photoswitches.

A novel oxindole-based light-driven molecular motor with pronounced push–pull character was investigated. The rotary mechanism stands in between the precessional motion of fluorene-based motors and the axial motion of biomimetic photoswitches.  相似文献   

16.
The Stefan problem regarding the formation of several liquid–solid interfaces produced by the oscillations of the ambient temperature around the melting point of a phase change material has been addressed by several authors. Numerical and semi-analytical methods have been used to find the thermal response of a phase change material under these type of boundary conditions. However, volume changes produced by the moving fronts and their effects on the thermal performance of phase change materials have not been addressed. In this work, volume changes are incorporated through an additional equation of motion for the thickness of the system. The thickness of the phase change material becomes a dynamic variable of motion by imposing total mass conservation. The modified equation of motion for each interface is obtained by coupling mass conservation with a local energy–mass balance at each front. The dynamics of liquid–solid interface configurations is analyzed in the transient and steady periodic regimes. Finite element and heat balance integral methods are used to verify the consistency of the solutions to the proposed model. The heat balance integral method is modified and adapted to find approximate solutions when two fronts collide, and the temperature profiles are not smooth. Volumetric corrections to the sensible and latent heat released (absorbed) are introduced during front formation, annihilation, and in the presence of two fronts. Finally, the thermal energy released by the interior surface is estimated through the proposed model and compared with the solutions obtained through models proposed by other authors.  相似文献   

17.

The effect of direct gas fluorination on the surface properties of a nonwoven polypropylene material was studied. Direct gas fluorination with mixtures of different compositions allows directional variation of the surface properties of the nonwoven polypropylene material. The surface becomes more hydrophobic when using a mixture of fluorine and nitrogen but less hydrophobic when using a mixture of fluorine, oxygen, and nitrogen. The modification leads to changes in the chemical composition of the surface and in the roughness of the material. The nonwoven polypropylene materials thus obtained exhibit increased sorption capacity for spent oil or water, respectively. Variation of the properties of the nonwoven polypropylene material allows expansion of its applications.

  相似文献   

18.
This article introduces a method for microscale assembly using laser-activated bubble latching. The technique combines the advantages of directed fluidic assembly and surface tension-driven latching to create arbitrarily complex and irregular structures with unique properties. The bubble latches, generated through the laser degradation of the tile material, are created on the fly, reversibly linking components at user-determined locations. Different phases of latching bubble growth are analyzed, and shear force calculations show that each bubble is able to support a tensile force of approximately 0.33 μN. We demonstrate that by exploiting the compressibility of bubbles, assembled objects can be made to switch between rigid and flexible states, facilitating component assembly and transport. Furthermore, we show reconfiguration capabilities through the use of bubble hinging. This novel hybrid approach to the assembly of microscale components offers significant user control while retaining a simplistic design environment.  相似文献   

19.
We here report a new approach to develop self-healing shape memory supramolecular liquid-crystalline (LC) networks through self-assembly of molecular building blocks via combination of hydrogen bonding and coordination bonding. We have designed and synthesized supramolecular LC polymers and networks based on the complexation of a forklike mesogenic ligand with Ag+ ions and carboxylic acids. Unidirectionally aligned fibers and free-standing films forming layered LC nanostructures have been obtained for the supramolecular LC networks. We have found that hybrid supramolecular LC networks formed through metal–ligand interactions and hydrogen bonding exhibit both self-healing properties and shape memory functions, while hydrogen-bonded LC networks only show self-healing properties. The combination of hydrogen bonds and metal–ligand interactions allows the tuning of intermolecular interactions and self-assembled structures, leading to the formation of the dynamic supramolecular LC materials. The new material design presented here has potential for the development of smart LC materials and functional LC membranes with tunable responsiveness.

New supramolecular hybrid liquid-crystalline networks exhibiting self-healing and shape memory properties are developed by self-assembly of small components through hydrogen bonding interactions and coordination bonding.  相似文献   

20.
Plastic has made our lives comfortable as a result of its widespread use in today’s world due to its low cost, longevity, adaptability, light weight and hardness; however, at the same time, it has made our lives miserable due to its non-biodegradable nature, which has resulted in environmental pollution. Therefore, the focus of this research work was on an environmentally friendly process. This research work investigated the decomposition of polypropylene waste using florisil as the catalyst in a salt bath over a temperature range of 350–430 °C. A maximum oil yield of 57.41% was recovered at 410 °C and a 40 min reaction time. The oil collected from the decomposition of polypropylene waste was examined using gas chromatography-mass spectrometry (GC-MS). The kinetic parameters of the reaction process were calculated from thermogravimetric data at temperature program rates of 3, 12, 20 and 30 °C·min−1 using the Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunnose (KAS) equations. The activation energy (Ea) and pre-exponential factor (A) for the thermo-catalytic degradation of polypropylene waste were observed in the range of 102.74–173.08 kJ·mol−1 and 7.1 × 108–9.3 × 1011 min−1 for the OFW method and 99.77–166.28 kJ·mol−1 and 1.1 × 108–5.3 × 1011 min−1 for the KAS method at a percent conversion (α) of 0.1 to 0.9, respectively. Moreover, the fuel properties of the oil were assessed and matched with the ASTM values of diesel, gasoline and kerosene oil. The oil was found to have a close resemblance to the commercial fuel. Therefore, it was concluded that utilizing florisil as the catalyst for the decomposition of waste polypropylene not only lowered the activation energy of the pyrolysis reaction but also upgraded the quantity and quality of the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号