首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rotaxane monolayer consisting of the cyclophane, cyclobis(paraquat-p-phenylene) (2), threaded on a "molecular string" that includes a pi-donor diiminobenzene unit and stoppered by an adamantane unit is assembled on a Au electrode. The surface coverage of the electroactive cyclophane unit, E degrees = -0.43 V vs SCE, corresponds to 0.8 x 10(-10) mol.cm(-2). The cyclophane (2) is structurally localized on the molecular string by generating a pi-donor-acceptor complex with the diiminobenzene units of the molecular string. The cyclophane (2) acts as a molecular shuttle, revealing electrochemically driven mechanical translocations along the molecular wire. Reduction of the cyclophane (2) to the respective biradical-dication results in its dissociation from the pi-donor site, and the reduced cyclophane is translocated toward the electrode. Oxidation of the reduced cyclophane reorganizes 2 on the pi-donor-diiminobenzene sites. The positions of the oxidized and reduced cyclophane units are characterized by chronoamperometric and impedance measurements. Using double-step chronoamperometric measurements the dynamics of the translocation of the cyclophane units on the molecular string is characterized. The reduced cyclophane moves toward the electrode with a rate constant corresponding to k(1) = 320 s(-1), whereas the translocation of the oxidized cyclophane from the electrode to the pi-donor binding site proceeds with a rate constant of k(2) = 80 s(-1). Also, in situ electrochemical/contact angle measurements reveal that the electrochemically driven translocation of the cyclophane on the molecular string provides a means to reversibly control the hydrophilic and hydrophobic properties of the surface. The latter system demonstrates the translation of a molecular motion into the macroscopic motion of a water droplet.  相似文献   

2.
A range of covalently linked donor-acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5-dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the pi-donor, and 4) cyclobis(paraquat-p-phenylene) (CBPQT(4+)) as the pi-accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The pi-donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self-complexing/decomplexing equilibria were shown to be highly temperature dependent when the pi-donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable-temperature (1)H NMR spectroscopy. The negative DeltaH degrees and DeltaS degrees values account for the fact that the "uncomplexed" conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor-acceptor interactions. The arm's in-and-out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self-complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF-containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self-complexing compounds could find applications as thermo- and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials.  相似文献   

3.
The influence of charged side chains on the folding-unfolding equilibrium of beta-peptides was investigated by means of molecular dynamics simulations. Four different peptides containing only negatively charged side chains, positively charged side chains, both types of charged side chains (with the ability to form stabilizing salt bridges) or no charged side chains were studied under various conditions (different simulation temperatures, starting structures and solvent environment). The NMR solution structure in methanol of one of the peptides (A) has already been published; the synthesis and NMR analysis of another peptide (B) is described here. The other peptides (C and D) studied herein have hitherto not been synthesized. All four peptides A-D are expected to adopt a left-handed 3(14)-helix in solution as well as in the simulations. The resulting ensembles of structures were analyzed in terms of conformational space sampled by the peptides, folding behavior, structural properties such as hydrogen bonding, side chain-side chain and side chain-backbone interactions and in terms of the level of agreement with the NMR data available for two of the peptides. It was found that the presence of charged side chains significantly slows down the folding process in methanol solution due to the stabilization of intermediate conformers with side chain-backbone interactions. In water, where the solvent competes with the solute-solute polar interactions, the folding process to the 3(14)-helix is faster in the simulations.  相似文献   

4.
Molecular shuttles are an intriguing class of rotaxanes which constitute prototypes of mechanical molecular machines and motors. By using stopped-flow spectroscopic techniques in acetonitrile solution, we investigated the kinetics of the shuttling process of a dibenzo[24]crown-8 ether (DB24C8) macrocycle between two recognition sites or "stations"--a secondary ammonium (-NH2+-)/amine (-NH-) center and a 4,4'-bipyridinium (bipy2+) unit--located on the dumbbell component in a [2]rotaxane. The affinity for DB24C8 decreases in the order -NH2+- > bipy2+ > -NH-. Hence, shuttling of the DB24C8 macrocycle can be obtained by deprotonation and reprotonation of the ammonium station, reactions which are easily accomplished by addition of base and acid to the solution. The rate constants were measured as a function of temperature in the range 277-303 K, and activation parameters for the shuttling motion in both directions were determined. The effect of different counterions on the shuttling rates was examined. The shuttling from the -NH2+- to the bipy2+ station, induced by the deprotonation of the ammonium site, is considerably slower than the shuttling in the reverse direction, which is, in turn, activated by reprotonation of the amine site. The results show that the dynamics of the shuttling processes are related to the change in the intercomponent interactions and structural features of the two mutually interlocked molecular components. Our observations also indicate that the counterions of the cationic rotaxane constitute an important contribution to the activation barrier for shuttling.  相似文献   

5.
Three of the first kind of hetero[3]rotaxanes, which comprise one linear component and one neutral and one tetracationic ring component, have been assembled by using the intermolecular hydrogen bonding and donor-acceptor interactions. Three neutral [2]rotaxanes and three tetracationic [2]rotaxanes have also been synthesized as intermediate products or for the sake of property comparison. The linear molecules are incorporated with two glycine subunits, for templating the formation of the neutral tetraamide cyclophane, and one or two hydroquinone subunits, for inducing the formation of the tetracationic cyclophane. Variable-temperature (1)H NMR investigation reveals that the shuttling behavior of the tetracationic ring component along the linear component is substantially influenced by the existence of the neutral ring component. The spatial repelling interaction of the neutral ring on the electron-deficient tetracationic ring simultaneously weakens the latter's "positioning" tendency at both electron-rich hydroquinone sites of the linear component. As a result, the activation energy associated with the shuttling process of the tetracationic ring between the two hydroquinone sites is remarkably reduced in comparison to that of the shuttling process of the corresponding neutral ring-free [2]rotaxanes. For the first time, the rotation of the dipyridinium subunit around the axis formed by the two methylene groups connecting them within the tetracationic cyclophane has been investigated by variable-temperature (1)H NMR spectroscopy and the associated kinetic data have also been successfully obtained. Furthermore, the UV-vis and fluorescent properties of the new [2]- and [3]rotaxanes have been studied. The results demonstrate that [3]rotaxanes with different ring components possess unique kinetic features that are not available in [3]rotaxanes with identical ring components.  相似文献   

6.
A series of donor–acceptor [2]‐, [3]‐, and [4]rotaxanes and self‐complexes ([1]rotaxanes) have been synthesized by a threading‐followed‐by‐stoppering approach, in which the precursor pseudorotaxanes are fixed by using CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition to attach the required stoppers. This alternative approach to forming rotaxanes of the donor–acceptor type, in which the donor is a 1,5‐dioxynaphthalene unit and the acceptor is the tetracationic cyclophane cyclobis(paraquat‐p‐phenylene), proceeds with enhanced yields relative to the tried and tested synthetic strategies, which involve the clipping of the cyclophane around a preformed dumbbell containing π‐electron‐donating recognition sites. The new synthetic approach is amenable to application to highly convergent sequences. To extend the scope of this reaction, we constructed [2]rotaxanes in which one of the phenylene rings of the tetracationic cyclophane is perfluorinated, a feature which significantly weakens its association with π‐electron‐rich guests. The activation barrier for the shuttling of the cyclophane over a spacer containing two triazole rings was determined to be (15.5±0.1) kcal mol?1 for a degenerate two‐station [2]rotaxane, a value similar to that previously measured for analogous degenerate compounds containing aromatic or ethylene glycol spacers. The triazole rings do not seem to perturb the shuttling process significantly; this property bodes well for their future incorporation into bistable molecular switches.  相似文献   

7.
Summary: Molecular dynamic simulation of side chain liquid crystalline elastomer has been carried out. As an initial state a flexible polymer network in a low molecular liquid-crystal (LC) solvent was used. The LC solvent comprises of anisotropic rod-like semiflexible linear molecules (mesogens) composed of particles bonded into the chain by FENE potential. Rigidity of LC molecules was induced by a bending potential. All interactions between nonbonded particles are described by a repulsive Lennard-Jones potential. For the systems with different values of density and order parameter obtained after sufficiently long trajectory the attachment of ends of mesogens to the polymer network was simulated. The kinetic of the process of mesogens attachment to network was studied as well as morphology of attachment. The structural and dynamical behaviour of side chain LC elastomer was studied and compared with systems of polymer network in low molecular LC solvent.  相似文献   

8.
A range of covalently linked donor–acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5‐dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the π‐donor, and 4) cyclobis(paraquat‐p‐phenylene) (CBPQT4+) as the π‐accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The π‐donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self‐complexing/decomplexing equilibria were shown to be highly temperature dependent when the π‐donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable‐temperature 1H NMR spectroscopy. The negative ΔH° and ΔS° values account for the fact that the “uncomplexed” conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor–acceptor interactions. The arm's in‐and‐out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self‐complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF‐containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self‐complexing compounds could find applications as thermo‐ and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials.  相似文献   

9.
采用增强采样分子动力学模拟研究了一轮烷型分子梭协助K+跨膜转运的机制, 该轮烷由两亲性的轴和套在轴上的大冠醚环及连接在大冠醚环上的小冠醚环构成, 轴上有3个带正电的结合位点. 通过计算穿梭过程的自由能变化, 探索了溶剂(氯仿、 乙腈、 水、 氯仿-乙腈)以及中间结合位点对该轮烷穿梭运动的影响, 并分析了中间位点在其携带K+穿越细胞膜(采用水-氯仿-水模拟)过程中的重要作用. 结果表明, 改变溶剂不会改变轮烷(不携带K+)的运动模式, 但随着溶剂极性的增加穿梭所需克服的自由能能垒显著降低; 在氯仿-乙腈混合溶剂中, 中间结合位点的质子化状态, 不影响轮烷(不携带K+)的穿梭能垒; 然而在模拟细胞膜的环境中, 该结合位点的质子化与去质子化相比大幅降低了穿梭的能垒, 促进了K+的跨膜转运, 表明中间位点的质子化对于离子转运至关重要, 进一步分析表明轮烷中大环穿梭和小环摆动的协同作用, 也是加速离子跨膜转运的另一关键因素.  相似文献   

10.
In recent years, considerable effort has been devoted to physico-chemical studies in non-aqueous and mixed solvents. Most of these have been concerned with solutions in mixed solvents with a view to explaining the effect of a changing solvent composition of the ion—solvent and electrode—solvent interactions. Several workers [1–6] have presented studies of electrode—solvent interactions in water—dioxane, water—glycol, water—alcohols and water—urea mixtures of various compositions, and have reported the role of the permittivity of the medium towards such interactions.In previous studies [3,7–9], we have examined the effect of changing the solvent from pure water to 10, 20, 30 and 40 mass % dioxane + water on the dissociation of acids, dissolution of silver salts and standard potentials of the silver—silver chromate electrode. To extend the work, we now report the results of a determination of the standard potentials of the silver—silver thiocyanate electrode and associated thermodynamic parameters for the electrode reaction in these media. However, various thermodynamic quantities for the electrode reaction of this electrode and the dissolution process of silver thiocyanate are known in water [10] and formamide [11].  相似文献   

11.
Three neutral cyclophanes were synthesized, and their association with indole, an aromatic pi-donor, was studied. The cyclophanes were designed to contain a rigid, hydrophobic binding cavity with 1,4,5,8-naphthalenetetracarboxylic diimide or 1,5-dinitronaphthalene as the pi-acceptor. Two of the cyclophanes also contain a (S)-(valine-leucine-alanine) tripeptide unit to provide chiral hydrogen bonding interactions with guest molecules. Despite the fact that these cyclophanes contain a hydrophobic binding cavity of appropriate dimensions, their association with indole is very weak. In the case of cyclophanes derived from 1,5-dinitronaphthalene, steric interactions force the nitro groups out of the plane of the naphthalene ring, diminishing their effectiveness as pi-acceptors. A simple UV--visible titrimetric method, using N,N,N',N'-tetramethyl-1,4-phenylenediamine (TMPD) as a pi-donor, was used to rank the pi-acceptor strength of these and other aromatic units. These titrations show that 1,4,5,8-naphthalenetetracarboxylic diimide and 1,5-dinitronaphthalene derivatives are weaker pi-acceptors than viologens, which make good pi-acceptor cyclophanes. Methyl viologen is in turn a weaker pi-acceptor than anthaquinone disulfonate, suggesting that the latter may serve as a useful building block for pi-accepting cyclophane hosts.  相似文献   

12.
The introduction of dibenzocyclohepten-5-ylidene as part of a unidirectional light-driven molecular motor allows a more complete picture of the pathway of thermal helix inversion to be developed. The most stable conformation is similar to that found in related motors in that it has, overall, an anti-folded structure with the substituent at the stereogenic centre adopting an axial orientation. Photochemical cis/trans isomerisation at -40 degrees C results in the formation of an isomer in a syn-folded conformation with the methyl group in an axial orientation. This contrasts with previous studies on related molecular rotary motors. The conformation of the higher energy intermediate typically observed for this class of compound is the anti-folded conformation, in which the methyl group is in an equatorial orientation. This conformation is available through an energetically uphill upper half ring inversion of the observed photochemical product. However, this pathway competes with a second process that leads to the more stable anti-folded conformation in which the methyl group is oriented axially. It has been shown that the conformations and pathways available for second-generation molecular motors can be described by using similar overall geometries. Differences in the metastable high-energy species are attributable to the relative energy and position on the reaction coordinate of the transition states. Kinetic studies on these new molecular motors thus provide important insights into the conformational dynamics of the rotation cycle.  相似文献   

13.
A new C3-symmetric drum-shaped homoditopic haxaamino bicyclic cyclophane and its hexachloride and hexaiodide complexes have been synthesized and characterized and dual recognition of guests has been demonstrated. Single-crystal X-ray analysis illustrates that bicyclic cyclophane has a cavity and side pockets for acetone molecules. The hexaprotonated state of this bicycle shows encapsulation of an iodide inside its cavity, and in hexachloride complex, chloride is recognized as Cl(-)...H2O in each of the three side pockets which are in extensive hydrogen bonding interactions with the water and chlorides. (1)H NMR experiments have also been carried out on hexatosylated cyclophane with the halides to study solution state binding.  相似文献   

14.
Charge-transfer interactions in cyclophane systems are reviewed. The majority of the work covered involves intermolecular complexation, with both donor and acceptor moieties existing within the same molecule. Studies have also been performed on intermolecular complexes, mainly tetracyanoethylene:cyclophane complexes. Host-guest complexes involving charge-transfer are also discussed. Other areas covered include solvent effects, substituent effects, and theoretical calculations.  相似文献   

15.
Rotacatenanes are exotic molecular compounds that can be visualized as a unique combination of a [2]catenane and a [2]rotaxane, thereby combining both the circumrotation of the ring component (rotary motion) and the shuttling of the dumbbell component (translational motion) in one structure. Herein, we describe a strategy for the synthesis of a new switchable [3]rotacatenane and the investigation of its switching properties, which rely on the formation of tetrathiafulvalene (TTF) radical π-dimer interactions-namely, the mixed-valence state (TTF(2) )(+.) and the radical-cation dimer state (TTF(+.) )(2) -under ambient conditions. A template-directed approach, based on donor-acceptor interactions, has been developed, resulting in an improved yield of the key precursor [2]catenane, prior to rotacatenation. The nature of the binding between the [2]catenane and selected π-electron-rich templates has been elucidated by using X-ray crystallography and UV/Vis spectroscopy as well as isothermal titration microcalorimetry. The multistate switching mechanism of the [3]rotacatenane has been demonstrated by cyclic voltammetry and EPR spectroscopy. Most notably, the radical-cation dimer state (TTF(+.) )(2) has been shown to enter into an equilibrium by forming the co-conformation in which the two 1,5-dioxynaphthalene (DNP) units co-occupy the cavity of tetracationic cyclophane, thus enforcing the separation of TTF radical-cation dimer (TTF(+.) )(2) . The population ratio of this equilibrium state was found to be 1:1. We believe that this research demonstrates the power of constructing complex molecular machines using template-directed protocols, enabling us to make the transition from simple molecular switches to their multistate variants for enhancing information storage in molecular electronic devices.  相似文献   

16.
The viscosity of polymer/solvent systems is modeled as a function of composition under the premises that the dissipation of energy is taking place at the molecular interfaces and that the friction between solvent and solute varies with composition due to a change in the flow mechanism (drainage of coils). The simple expression obtained in this manner contains three system‐specific parameters: a geometric factor γ, which accounts for the differences of the surface to volume ratios of the components; a hydrodynamic parameter α, which measures the friction between solute and solvent in the case of fully draining polymer coils; and β, which corrects for changes in the friction between unlike molecules resulting from collective motions owing to limited draining. Experimental data published for 12 poly(dimethylsiloxane)/pentamer mixtures can be represented quantitatively by this relation; moreover the knowledge of the three system‐specific parameters permits the calculation of intrinsic viscosities, and the molecular weight dependencies of γ and α yield the entangle molecular weight of the polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2221–2228, 1999  相似文献   

17.
Electrochemical sensors for the analysis of TNT with enhanced sensitivities are described. The enhanced sensitivities are achieved by tailoring pi-donor-acceptor interactions between TNT and pi-donor-modified electrodes or pi-donor-cross-linked Au nanoparticles linked to the electrode. In one configuration a p-aminothiophenolate monolayer-modified electrode leads to the analysis of TNT with a sensitivity corresponding to 17 ppb (74 nM). In the second configuration, the cross-linking of Au NPs by oligothioaniline bridges to the electrode yields a functionalized electrode that detects TNT with a sensitivity that corresponds to 460 ppt (2 nM). Most impressively, the imprinting of molecular TNT recognition sites into the pi-donor oligoaniline-cross-linked Au nanoparticles yields a functionalized electrode with a sensitivity that corresponds to 46 ppt (200 pM). The electrode reveals high selectivity, reusability, and stability.  相似文献   

18.
The properties of tetrathiafulvalene dimers ([TTF](2)(2+)) and the functionalized ring-shaped bispropargyl (BPP)-functionalized TTF dimers, [BPP-TTF](2)(2+), found at room temperature in charged [3]catenanes, were evaluated by M06L calculations. The results showed that their isolated [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are energetically unstable towards dissociation. When enclosed in the 4(+)-charged central cyclophane ring of charged [3]catenanes (CBPQT(4+)), [TTF](2)(2+) and [BPP-TTF](2)(2+) dimers are also energetically unstable with respect to leaving the CBPQT(4+) ring; since the barrier for the exiting process is only about 3 kcal mol(-1), that is, within the reach of thermal energies at room temperature (neutral [TTF](2)(0) dimers are stable within the CBPQT(4+) ring). However, the [BPP-TTF](2)(2+) dimers in charged [3]catenanes cannot exit, because this would imply breaking the covalent bonds of the BPP-TTF(+) macrocycle. Finally, it was shown that the [TTF](2)(2+), [BPP-TTF](2)(2+) dimers, and charged [3]catenanes are energetically stable in solution and in crystals of their salts, in the first case due to the interactions with the solvent, and in the second case mostly due to cation-anion interactions. In these environmental conditions at room temperature the TTF units of the [BPP-TTF](2)(2+) dimers make short contacts, thus allowing their SOMO orbitals to overlap: a room-temperature multicenter long bond is formed, similar to those previously found in other [TTF](2)(2+) salts and their solutions.  相似文献   

19.
Although a free rotation around a single bond gives no mechanical output, it has let us imagine a molecular motor. A para-substituted aromatic ring can be regarded as a rotator with the para-rotation axis. When it is incorporated in a wider pi-conjugated system, a quinoidal structure is generated accompanied by oxidation on the substituted groups at the 1,4-position, and the axis is fixed. A paraphenylenediamine was selected as the nanomechanical molecular module capable of locking and releasing the free rotation using an electrode in solution. We inserted the module into a simple molecular system, cyclophane. It was clarified that the cyclophane was able to open and close its cavity in a reversible redox process repeatedly.  相似文献   

20.
The electrochromic properties of a polythiophene polyrotaxane film consisting of a polythiophene backbone wrapped by the tetra-cationic cyclophane, cyclobis(paraquat-p-phenylene), were characterized. A naked reference polythiophene film, i.e., polythiophene without tetra-cationic cyclophane, was also characterized. The surface morphology and thickness of the film (L) were observed by atomic force microscopy. The surface of the naked reference polythiophene film has micrometer-scale polythiophene aggregates, which causes the darker color of the film and smaller color contrast in the electrochromic process. The polythiophene polyrotaxane gives a more homogeneous and brighter colored film owing to the suppression of molecular interactions between the polythiophene chains by the tetra-cationic cyclophanes. Potential-step chronoamperometric measurement provided the area density of the oxidizable sites (Γ) and the apparent diffusion coefficient of the charge transport in the film. From linear relationship between L and Γ, the concentrations of the oxidizable sites in the polythiophene polyrotaxane and naked reference polythiophene films were calculated to be 1.3 and 2.4 mmol cm(-3), respectively. Interestingly, the polythiophene polyrotaxane film afforded a significantly larger apparent diffusion coefficient than the naked reference polythiophene film. This result suggests that the rate-determining step of the charge transport is not the electron hopping between the polythiophene chains but the transport of charge-compensating counterions from the solvent into the polythiophene. We believe that the counteranions of the tetra-cationic cyclophane provide a pathway allowing the charge-compensating counteranions to migrate from the solvent to polythiophene. The polythiophene polyrotaxane film showed faster color change than the naked reference polythiophene film in the electrochromic reaction. These results indicate that our polythiophene polyrotaxane is a better electrochromic material than the naked reference polythiophene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号