首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A series of metal ion complexes of the thiosemicarbazone,N-methyl-2[1-(2-pyridinyl)ethylidene]-hydrazinecarbothioamide (HL4M) has been prepared and spectrally characterized. HL4M coordinates either as a neutral bidentate ligand (i.e., pyridyl N and imine N) or as deprotonated tridentate ligand (i.e., pyridyl N, imine N and thiol sulphur). The cobalt(II) salts yield hexacoordinated cobalt(III) cations, and an isoelectronic species, [Ni(L4M)2], has been formed from Ni(C2H3O2)2. The remaining nickel(II) complexes involve the neutral ligand, as do two of the three copper(II) complexes. HL4M possesses a weaker ligand field and has less covalency in its bonding than related thiosemicarbazones that possess anN-dialkyl-function.  相似文献   

2.
Summary Metal ion complexes of the thiosemicarbazone,4 N-cyclohexyl-2-[1-(2-pyridinyl)ethylidene]hydrazinecarbothioamide (HL4CH), have been prepared and spectrally characterised. Both the size of the cyclohexyl-group attached at4N as well as the4N hydrogen affect the stoichiometry and stereochemistry of the isolated complexes. The large cyclohexyl-group evidently causes the isolation of [Fe(HL4CH) (L4CH)H2O](ClO4) instead of the expected [Fe(L4CH)2]ClO4[Co(L4CH)Br] instead of [Co(HL4CH)Br2], and [Ni(L4CH)Br] instead of [Ni(HL4CH)2Br2]. The presence of the hydrogen at4N presumably hinders the deprotonation of HL4CH on complex formation since [Cu(HL4CH)Cl2] was isolated rather than [CuLCl], which occurs when the thiosemicarbazone has4N with two alkyl groups or incorporated in a ring. Further, although we prepared [Ni(L4CH)Br], complexes of this stoichiometry are planar and diamagnetle when4N does not have a hydrogen(s) attached to it rather than tetrahedral and paramagnetic as has been found for the present complex.  相似文献   

3.
Summary TheN-methyl-2-[1-(2-pyridinyl-1-oxide)ethylidene]hydrazinecarbothioamide, HLO4M, has been used to prepare a series of CoIII, NiII and CuII complexes. Species with two deprotonated LO4M ligands, one LO4M and one HLO4M ligand, two HLO4M ligands and one HLO4M ligand with two small anionic ligands have been isolated. The deprotonated LO4M bonds as a tridentate ligandvia theN-oxide oxygen, the imine nitrogen (N1 and the sulphur while the HLO4M ligand coordinates primarily as a bidentate ligandvia only the first two atoms listed above. I.r., electronic, mass and e.s.r. spectra have been used to determine the nature of these complexes. One of the more striking differences between these compounds and those prepared with other thiosemicarbazones of 2-acetylpyridine and 2-acetylpyridineN-oxide is that tetrahedral yellow [Ni(HL)X2] rather than planar brown [NiLX] (X=Cl or Br) solids have been isolated with this ligand. Other differences in the nature of the coordination spheres of the various metal ions occur with this particular ligand when compared to previously studied thiosemicarbazone complexes.NATO Fellow, on leave from Medical Faculty, Istanbul University.  相似文献   

4.
Summary Metal ion complexes of the thiosemicarbazone, 3-hexamethyleneimine-3-thiocarboxylic acid-2-[1-(2-pyridyl)-ethylidene]hydrazide (HLhexim) have been prepared and spectrally characterized. HLhexim coordinates primarily as the deprotonated tridentate ligand (i.e., pyridylN, azomethineN, and thione sulphur). The air oxidised cobalt(III) complex, [Co(LHexim)2] (BF4), was isolated from the preparation with cobalt(II) tetrafluoroborate, but other cobalt(II) salts yielded tetrahedral cobalt(II) compounds. Planar nickel(II) and copper(II) complexes were isolated from preparations with halide salts. Significant differences in the spectral properties of the various complexes are observed when compared to other thiosemicarbazones prepared from 2-acetylpyridine.  相似文献   

5.
Summary Metal ion complexes of the thiosemicarbazone, 3-piperidinyl-3-thiocarboxylic acid-2-[1-(2-pyridyl)ethylidene]hydrazide (HLpip) have been prepared and spectrally characterized. HLpip coordinates both as the deprotonated ligand (i.e., pyridylN, azomethineN, and thione sulphur) and the neutral ligand (i.e., pyridylN and azomethineN) with the sulphur possibly weakly coordinating in [Ni(HLpip)2](BF4)2. All three preparative cobalt(II) salts yielded cobalt(III) cationic complexes. The nickel(II) and copper(II) chloride salts gave [M(Lpip)Cl] solids while complexes involving the neutral ligand were prepared with the corresponding bromide salts. Significant differences in the spectral properties of the various complexes are observed when compared to other thiosemicarbazones prepared from 2-acetylpyridine.  相似文献   

6.
Summary A series of cobalt(II), nickel(II) and copper(II) complexes of 2-picolinamineN-oxide, HA, has been prepared. Solids of formula [M(HA)3](BF4)2 (M=cobalt(II) or nickel(II); [Cu(HA)2]X2 (X=BF 4 , NO 3 ); [Co(HA)2X2] (X=Cl or Br); [Ni(HA)2Cl2] and [Cu(HA)X2] (X=Cl or Br] have been isolated and characterized by partial elemental analyses, molar conductivities, magnetic susceptibilities, DSC-TGA, and spectral methods. All complexes were found to be monomeric, and their spectral parameters are compared with those of the metal ion complexes ofN-alkyl-2-picolinamineN-oxides, 2-dialkylaminopyridineN-oxides and 2-picolinamine. The cobalt(II) and nickel(II) halide complexes spectrally show a mixture of octahedral and tetrahedral centres.  相似文献   

7.
Summary Nickel(II), palladium(II), cobalt(II) and copper(II) complexes of the ligandN,N-1,2-propane-bis(methyl 2-amino-cyclopent-1-ene-dithiocarboxylate) (H2L1),N,N-1,3-propane-bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate) (H2L2) andN,N-[bis(methyl 2-aminocyclopent-1-ene-dithiocarboxylate)] diethylenetriamine (H2L3) have been synthesised. Both H2L1 and H2L2 form complexes of the type ML, and all but the copper(II) complexes, are square planar. In the copper(II) complexes tetrahedral distortion is significantly more with CuL2. From H2L3 square planar complexes of the type [M(HL3)X] (M=Ni, X=Cl, Br, I or SCN; M=Pd, X=Cl or Br) have been obtained in which the donor unit involved is N2SX. The composition of the cobalt(II) and copper(II) complexes is [M(H2L3)X2] (X=Cl or Br) which contain the chromophore [MN3X2].  相似文献   

8.
Summary Two series of copper(II) complexes. [Cu(HL)X2] and [Cu(L)Cl], where HL is a 2-formylpyridine4 N-substituted thiosemicarbazone, L is an anion formed by loss of the2N hydrogen and X=Cl or Br, have been prepared and spectrally characterised. Their growth inhibition ofAspergillus niger andPaecilomyces variotii has been measured and compared with analogous complexes formed from 2-acetylpyridine thiosemicarbazones.  相似文献   

9.
A new 4-[1-(4-methylphenylsulfonyl)-1H-indol-3-yl]but-3-en-2-one thiosemicarbazone (HL) was synthesized derived from 4-[1-(4-methylphenylsulfonyl)-1H-indol-3-yl]but-3-en-2-one. Four transition metal(II) complexes of HL have been prepared. Elemental analysis, molar conductivity, IR, UV, 1H NMR spectra, and TG-DTA have been used to characterize these complexes. The complexes have the general formula ML2, where M = Zn, Cu, Co, and Ni. The ligand and its complexes have been studied for their possible biological activity including anti-inflammatory, antibacterial, and antitumour activity in vitro.  相似文献   

10.
The [M(HL)2(H2O)2]X2 complexes were synthesized (M = Mn(II), Co(II), Ni(II), Cu(II), Zn; X = CH3COO, Cl, BF4 ) that incorporate bidentately coordinated molecules of N,N-dimethylhydrazide of 4-nitrobenzoic acid (HL). The latter molecules chelate the metal atom through the carbonyl O atom and the N atom of dimethylamino group. The square-planar complexes of Cu and Ni with deprotonated form of a ligand with composition ML2 were also isolated. The synthesized complexes were studied by IR, electronic and EPR spectroscopies, and by cyclic voltammetry.  相似文献   

11.
Summary The chlorides and bromides of cobalt(II), nickel(II) and copper(II) along with the acetates of the latter two metal ions and copper(II) tetrafluoroborate were used to prepare complexes ofN-2-(5-picolyl)-N-phenylthiourea (5MTUH). 5MTUH coordinates as a bidentate ligand via the pyridyl nitrogen and the sulphur atoms in the cobalt(II) complexes and the compounds isolated with Cu(BF4)2 and CuCl2. Complexes of stoichiometry [Cu(5MTU)X] (X=Br or C2H3O2) appear to have the deprotonated ligand coordinated via the pyridyl andN thioamide nitrogens and the sulphur atom. The nickel(II) complexes involve monodentate 5MTUH with sulphur being the donor atom. A violet, octahedral [Co(5MTUH)2Cl2] complex and a blue, tetrahedral [Co(5MTUH)Cl2] complex have been isolated, but with CoBr2 only an octahedral complex could be prepared.  相似文献   

12.
The Schiff base ligand 4-methyl-2-pentanone thiosemicarbazone (MPTSC) (HL) has been synthesized by the interaction of 4-methyl-2-pentanone (MP) and thiosemicarbazone (TSC). The Ni(II), Cu(II), and Fe(III) binary complexes of this ligand have been prepared. The ternary complexes of VO(IV) and Mn(II) ions with HL and glutamine (Glu) as a secondary ligand, in addition to VO(IV), Mn(II), and La(III) with HL and glycine (Gly) as a secondary ligand, have also been synthesized. The binary and ternary complexes have been characterized based on elemental analysis, IR, UV-VIS, molar conductance, mass spectra, magnetic moment, and ESR measurements. The magnetic moment, UV, and ESR studies suggest that Ni(II) and Cu(II) complexes are square planar, whereas Fe(III), Mn(II), and La(III) complexes have octahedral geometry, but VO(IV) ternary complexes have square pyramidal geometry. The analytical data indicate that the metal-to-ligand ratio in binary complexes is 1:1, except HL-Cu(II) chloride complex where the metal-to-ligand to secondary ligand ratio in ternary complexes is 1:1:1. The anticancer studies showed that the anticancer activity is in the decreasing order: ternary complexes > binary complexes > free ligand (HL).

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

13.
Some 1:1 and 1:2 adducts of cobalt(II), nickel(II) and copper(II) chloroacetates with quinoline N -oxide have been isolated by the interaction of the appropriate metal chloroacetate with quinoline N -oxide (QuinNo). The complexes isolated are of 1:1 stoichiometry of formula [M(CH3_xClxCOO)2QuinNO] (when M=Co(II), Ni(II); X=1,2 and 3 and when M=Cu(II), X=l and 2) except copper(II) trichloroacetate which yields an adduct of 1:2 stoichiometry of formula[Cu(CCI3COO)2(QuinNO)2]. The adducts isolated are soluble in common organic solvents.  相似文献   

14.
Summary The ligand 3-azabicyclo[3.2.2]nonane-3-thiocarboxylic acid 2-[1-(2-pyridinyl)ethylidene]hydrazide (HL), which is observed in an unusual tautomeric form in the solid state, and its selenium analogue (HLSe) have been used to prepare a series of nickel(II) complexes. Compounds of the general formula [NiLX] (X=Cl, Br, NCS, N3, NO2 or NCSe) as well as [Ni(LSe)Cl] have been found to be diamagnetic, planar complexes. A single crystal study of [NiL(NCS)] shows the deprotonated ligand bound in a tridentate mannervia its pyridyl nitrogen, imine nitrogen and the thione sulphur atom with the nitrogen atom of the thiocyanato-ligand occupying the fourth coordination position. The solids prepared from the nickel(II) salts having tetrafluoroborate, nitrate and iodide ions approximate to octahedral symmetry and have neutral HL ligands coordinated in a bidentate fashionvia the pyridine and imine nitrogens with the remaining coordination sites being occupied by the anions or water molecules. The [NiL2] solid is also octahedral with the two deprotonated ligands bonding as tridentate groupsvia the same atoms as in the [NiLX] complexes.  相似文献   

15.
The Schiff base N-crotonyl-2-hydroxyphenylazomethine HL, derived from the reaction of acrylamide and salicylaldehyde, was synthesised. Polymeric complexes were obtained from the reaction of polymeric HL with divalent metals. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods and compared with that previously reported for the analogous monomeric ligand. These studies revealed tetrahedral geometries around the metal centres for Mn(II), Co(II), Zn(II), Cd(II) and Hg(II) complexes of general formula [M(L)Cl], octahedral for Ni(II) and Cu(II) complexes of general formula [M′(L)Cl(H2O)2], and square planar for Pd(II) complex of general formula [Pd(L)Cl].  相似文献   

16.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

17.
Three crystal structures of Ni compounds containing bis(pyridine-2-carbaldehyde thiosemicarbazone) ligand (HL), namely (pyridine-2-carbaldehyde thiosemicarbazonato)(pyridine-2-carbaldeyde thiosemicarbazone) nickel(II) nitrate hydrate [Ni(HL)L][NO3]·(H2O) (1), bis(pyridine-2-carbaldehyde thiosemicarbazone) nickel(II) dinitrate [Ni(HL)2][NO3]2·(2a), and bis(pyridine-2-carbaldehyde thiosemicarbazone) nickel(II) dinitrate dihydrate [Ni(HL)2][NO3]2·2(H2O) (2b) are determined by X ray diffraction methods. Comparative structural studies are carried out.  相似文献   

18.
Preparation and properties of nickel(II) and cobalt(II) chelates of the bidentate ligand trans-2-ethylthio-cyclohexyl-phenylphosphine (ÄMCPP) are described. Three types of nickel(II) complexes have been obtained from ÄMCPP: the four-coordinated, square planar [Ni(ÄMCPP)2]X2 (X = J, Br, ClO4); five-coordinated [Ni(ÄMCPP)2X]X (X = Cl, NCS), [Ni(ÄMCPP)2X]BPh4 (X = Cl, NCS) and the octahedral [Ni(ÄMCPP)2Cl2]. Cobalt(II) forms tetrahedral 1.1-[Co(ÄMCPP)X2] (X = Br, Cl) and 1.2-Co(ÄMCPP)2X2(X = Br, Cl, NCS) complexes. All compounds were characterized by electronic reflectance and absorption spectra, conductivity and magnetic measurements.  相似文献   

19.
The complexes resulting from the interaction of a new Schiff base ligand derived from crosslinked polystyrene bound benzaldehyde and 2-aminobenzimidazole with a square planar complex [Co(TPP)] (where TPP = meso-tetraphenylporphyrin), and also with tetrahedral complexes [Co(BPBI)2X2] (where BPBI = 1-benzyl-2-phenylbenzimidazole, X = Cl, Br, or NCS) have been isolated and characterized. The percentages of cobalt and nitrogen in the complexes show that only one Schiff base unit is coordinated to cobalt. Infrared spectra suggest that the bonding of the polymer ligand to cobalt is through the N-3 atom of the benzimidazole moiety. The EPR spectra indicate that all the complexes are in the low-spin state and have a square pyramidal environment around cobalt(II). © 1992 John Wiley & Sons, Inc.  相似文献   

20.
Two Ni(II) complexes, [Ni(dmoTSCH)Cl] (1) and [Ni(dmoPhTSCH)Cl] (2) of the tridentate thiosemicarbazone ligands diacetylmonooxime thiosemicarbazone (dmoTSCH2) and diacetylmonooxime (4-phenyl)thiosemicarbazone (dmoPhTSCH2) have been synthesized. X-ray crystal structure of [Ni(dmoTSCPhTSCH)Cl] (2) indicates that the Ni(II) assumes a square planar geometry in the complexes, with the ligand coordinated in a monoanionic N,N,S donor mode and the fourth coordination position of Ni(II) is occupied by a chloride ion. Cyclic and differential pulse voltammetric experiments suggest that the Ni(II) complexes can undergo a two electron reduction at about ?1.0V. It is shown that the Ni(II) complexes in DMF or DMSO solutions can mimic CO-dehydrogenase activity by oxidizing CO to CO2 in presence of a base like NaOAc and a sacrificial electron acceptor like methyl viologen and the colour of the resultant MV.+ can be used to monitor the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号