首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The potential of the thermal decomposition of cyanogen azide (NCN3) as a high-temperature cyanonitrene (NCN) source has been investigated in shock tube experiments. Electronic ground-state NCN(3Σ) radicals have been detected by narrow-bandwidth laser absorption at overlapping transitions belonging to the Q1 branch of the vibronic 3Σ+?3Π subband of the vibrationally hot 3Πu(010)?3Σg?(010) system at = 30383.11 cm(-1) (329.1302 nm). High-temperature absorption cross sections σ have been directly measured at total pressures of 0.2?2.5 bar, log[σ/(cm2 mol(-1))] = 8.9?8.3 × 10(-4) × T/K (±25%, 750 < T < 2250 K). At these high temperatures, NCN(3Σ) formation is limited by a slow electronic relaxation of the initially formed excited NCN(1Δ) radical rather than thermal decomposition of NCN3. Measured temperature-dependent collision-induced intersystem crossing (CIISC) rate constants are best represented by kCIISC/(cm3 mol(-1) s(-1)) = (1.3 ± 0.5) × 1011 exp[?(21 ± 4) kJ/mol/RT] (740 < T < 1260 K). Nevertheless, stable NCN concentration plateaus have been observed, showing that NCN3 is an ideal precursor for NCN kinetic experiments behind shock waves.  相似文献   

2.
A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of lambda = 1590 nm for H2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588 < or = lambda < or = 1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm x m x Hz(-1/2) was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.  相似文献   

3.
The thermal decomposition of the benzyl radical was studied in shock tube experiments using ultraviolet laser absorption at 266 nm for detection of benzyl. Test gas mixtures of 50 and 100 ppm of benzyl iodide dilute in argon were heated in reflected shock waves to temperatures ranging from 1430 to 1730 K at total pressures around 1.5 bar. The temporal behavior of the 266 nm absorption allowed for determination of the benzyl absorption cross-section at 266 nm and the rate coefficient for benzyl decomposition, C6H5CH2 --> C7H6 + H. The rate coefficient for benzyl decomposition at 1.5 bar can be described using a two-parameter Arrhenius expression by k1(T) = 8.20 x 10(14) exp(-40 600 K/T) [s(-1)], and the benzyl absorption cross-section at 266 nm was determined to be sigma(benzyl) = 1.9 x 10(-17) cm2 molecule(-1) with no discernible temperature dependence over the temperature range of the experiments.  相似文献   

4.
A vertical-cavity surface-emitting laser (VCSEL) was used to study the absorption spectrum of water vapor in the 940nm region. Measurements were performed in ambient air at room temperature and in a hydrogen-oxygen flame over the temperature range of 1500-1800K. Several rotational absorption lines within the 2v1 + v3 vibrational band were measured. The absorption spectra were well resolved, which demonstrates the feasibility of VCSEL-based spectroscopic measurements of water vapor at room and high-temperature in this spectral region. The results were in good agreement with the values obtained from the HITRAN-96 database.  相似文献   

5.
A new type of semi-conductor laser with composition InAsSb/InAsSbP is described. This laser was produced for the absorption spectroscopy of atmospherically important molecules in the 3100 cm(-1) region and tested using a closed-cycle He-cryostat in the temperature range 30-80 K. The optimal characteristics of the laser were found to be a heatsink temperature of 62 K and a drive current range of 50-350 mA. Under these conditions, the laser emits single-mode radiation in an exceptionally large wavenumber range of > 10 cm(-1). To test the laser, several experiments were carried out in which the rovibrational absorption spectra of CH3Cl, NH3, OCS and H2O were measured.  相似文献   

6.
Flash photolysis (FP) coupled to resonance fluorescence (RF) was used to measure the absolute rate coefficients (k(1)) for the reaction of OH(X(2)Π) radicals with diiodomethane (CH(2)I(2)) over the temperature range 295-374 K. The experiments involved time-resolved RF detection of the OH (A(2)Σ(+)→X(2)Π transition at λ = 308 nm) following FP of the H(2)O/CH(2)I(2)/He mixtures. The OH(X(2)Π) radicals were produced by FP of H(2)O in the vacuum-UV at wavelengths λ > 120 nm. Decays of OH radicals in the presence of CH(2)I(2) are observed to be exponential, and the decay rates are found to be linearly dependent on the CH(2)I(2) concentration. The results are described by the Arrhenius expression k(1)(T) = (4.2 ± 0.5) × 10(-11) exp[-(670 ± 20)K/T] cm(3) molecule(-1) s(-1). The implications of the reported kinetic results for understanding the atmospheric chemistry of CH(2)I(2) are discussed.  相似文献   

7.
Absolute room temperature (294 ± 2 K) absorption cross sections for the ?(1)A(2)-X?(1)A(1) electronic transition of formaldehyde have been measured over the spectral range 30,285-32,890 cm(-1) (304-330 nm) using ultraviolet (UV) laser absorption spectroscopy. Accurate high-resolution absorption cross sections are essential for atmospheric monitoring and understanding the photochemistry of this important atmospheric compound. Absorption cross sections were obtained at an instrumental resolution better than 0.09 cm(-1), which is slightly broader than the Doppler width of a rotational line of formaldehyde at 300 K (~0.07 cm(-1)) and so we were able to resolve all but the most closely spaced lines. Comparisons with previous data as well as with computer simulations have been made. Pressure broadening was studied for the collision partners He, O(2), N(2), and H(2)O and the resulting broadening parameters have been measured and increase with the strength of intermolecular interaction between formaldehyde and the collision partner. The pressure broadening coefficient for H(2)O is an order of magnitude larger than the coefficients for O(2) and N(2) and will contribute significantly to spectral line broadening in the lower atmosphere. Spectral data are made available as Supporting Information.  相似文献   

8.
Absolute rate coefficients for the title reaction, HO + HOCH(2)C(O)CH(3)--> products (R1) were measured over the temperature range 233-363 K using the technique of pulsed laser photolytic generation of the HO radical coupled to detection by pulsed laser induced fluorescence. The rate coefficient displays a slight negative temperature dependence, which is described by: k(1)(233-363 K) = (2.15 +/- 0.30) x 10(-12) exp{(305 +/- 10)/T} cm(3) molecule(-1) s(-1), with a value of (5.95 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1) at room temperature. The effects of the hydroxy-substituent and hydrogen bonding on the rate coefficient are discussed based on theoretical calculations. The present results, which extend the database on the title reaction to a range of temperatures, indicate that R1 is the dominant loss process for hydroxyacetone throughout the troposphere, resulting in formation of methylglyoxal at all atmospheric temperatures. As part of this work, the rate coefficient for reaction of O((3)P) with HOCH(2)C(O)CH(3) (R4) was measured at 358 K: k(4)(358 K) = (6.4 +/- 1.0) x 10(-14) cm(3) molecule(-1) s(-1) and the absorption cross section of HOCH(2)C(O)CH(3) at 184.9 nm was determined to be (5.4 +/- 0.1) x 10(-18) cm(2) molecule(-1).  相似文献   

9.
The thermal decomposition of acetaldehyde, CH3CHO + M --> CH3 + HCO + M (eq 1), and the reaction CH3CHO + H --> products (eq 6) have been studied behind reflected shock waves with argon as the bath gas and using H-atom resonance absorption spectrometry as the detection technique. To suppress consecutive bimolecular reactions, the initial concentrations were kept low (approximately 10(13) cm(-3)). Reaction was investigated at temperatures ranging from 1250 to 1650 K at pressures between 1 and 5 bar. The rate coefficients were determined from the initial slope of the hydrogen profile via k1 = [CH3CHO]0(-1) x d[H]/dt, and the temperature dependences observed can be expressed by the following Arrhenius equations: k1(T, 1.4 bar) = 2.9 x 10(14) exp(-38 120 K/T) s(-1), k1(T, 2.9 bar) = 2.8 x 10(14) exp(-37 170 K/T) s(-1), and k1(T, 4.5 bar) = 1.1 x 10(14) exp(-35 150 K/T) s(-1). Reaction was studied with C2H5I as the H-atom precursor under pseudo-first-order conditions with respect to CH3CHO in the temperature range 1040-1240 K at a pressure of 1.4 bar. For the temperature dependence of the rate coefficient the following Arrhenius equation was obtained: k6(T) = 2.6 x 10(-10) exp(-3470 K/T) cm(3) s(-1). Combining our results with low-temperature data published by other authors, we recommend the following expression for the temperature range 300-2000 K: k6(T) = 6.6 x 10(-18) (T/K) (2.15) exp(-800 K/T) cm(3) s(-1). The uncertainties of the rate coefficients k1 and k6 were estimated to be +/-30%.  相似文献   

10.
The reaction of toluene with hydrogen atoms yielding benzyl and molecular hydrogen, C(6)H(5)CH(3) + H --> C(6)H(5)CH(2) + H(2), was investigated using UV laser absorption of benzyl radicals at 266 nm in shock tube experiments. Test gas mixtures of toluene and ethyl iodide, an H-atom source, diluted in argon were heated in reflected shock waves to temperatures ranging from 1256 to 1667 K at total pressures around 1.7 bar. Measurement of laser absorption at 266 nm due to benzyl radicals allowed determination of the rate coefficient of the title reaction, reaction 1. A two-parameter best-fit Arrhenius expression for the rate determinations over the temperature range of these experiments is given by k(1)(T) = 1.33 x 10(15) exp(-14880 [cal/mol]/RT) [cm(3) mol(-1) s(-1)]. With the use of both the high-temperature shock tube measurements reported here and the rate coefficient determination of Ellis et al. (Ellis, C.; Scott, M. S.; Walker, R. W. Combust. Flame 2003, 132, 291) at 773 K the best-fit rate coefficient for reaction 1 can be described using a three-parameter Arrhenius expression by k(1)(T) = 6.47T (3.98) exp(-3384 [cal/mol]/RT) [cm(3) mol(-1) s(-1)].  相似文献   

11.
The BrO self-reaction, BrO + BrO → products (1), has been studied using laser flash photolysis coupled with UV absorption spectroscopy over the temperature range T = 266.5-321.6 K, under atmospheric pressure. BrO radicals were generated via laser photolysis of Br(2) in the presence of excess ozone. Both BrO and O(3) were monitored via UV absorption spectroscopy using charge-coupled device (CCD) detection. Simultaneous fitting to both temporal concentration traces allowed determination of the rate constant of the two channels of , BrO + BrO → 2Br + O(2) (1a); BrO + BrO → Br(2) + O(2) (1b), hence the calculation of the overall rate of and the branching ratio, α: k(1a)/cm(3) molecule(-1) s(-1) = (1.92 ± 1.54) × 10(-12) exp[(126 ± 214)/T], k(1b)/cm(3) molecule(-1) s(-1) = (3.4 ± 0.8) × 10(-13) exp[(181 ± 70)/T], k(1)/cm(3) molecule(-1) s(-1) = (2.3 ± 1.5) × 10(-12) exp(134 ± 185 /T) and α = k(1a)/k(1) = (0.84 ± 0.09) exp[(-7 ± 32)/T]. Errors are 1σ, statistical only. Results from this work show a weaker temperature dependence of the branching ratio for channel (1a) than that found in previous work, leading to values of α at temperatures typical of the Polar Boundary Layer higher than those reported by previous studies. This implies a shift of the partitioning between the two channels of the BrO self-reaction towards the bromine atom and hence directly ozone-depleting channel (1a).  相似文献   

12.
We report the realisation of a laser spectrometer in the mid-infrared spectral region based on difference-frequency generation in a periodically poled LiNbO3 crystal. Tunable coherent radiation around 3 microm was produced by mixing a diode-pumped monolithic cw Nd-YAG laser and an injection-locked diode laser at 0.785 microm. High sensitivity N2O detection was demonstrated by observing pure absorption spectra of lines in the v1 + v3 combination band. We estimate a minimum detectable pressure of pure N2O of 1 x 10(-2) Pa with 0.9 m absorption path-length, corresponding to an absorbance of 3 x 10(-4). Nitrous oxide was also detected in presence of O2, N2 and air. Collisional broadening coefficients for the P(33) line at 3447.678 per cm are reported for N2O-N2 and N2O-O2 mixtures.  相似文献   

13.
Rate constants for the gas phase reactions of OH(?) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(?) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.  相似文献   

14.
We have recorded extremely weak absorption in the overtone band 5-0 of 12C16O X 1sigma+ near 0.96 microm with cavity ringdown spectroscopy; the light source was a Raman-shifted dye laser pumped with a frequency-doubled Nd:YAG laser. This band shows lines in branch P to be much more intense than corresponding lines in branch R, in contrast to all lower overtone bands v-0 (v = 1-4). This reversal in relative intensity is explained quantitatively in terms of a radial function for the electric dipolar moment of CO. We have estimated absorption line strengths for P3-P18 in band 5-0 of 12C16O; these strengths are consistent with a pure vibrational matrix element <5/p(x)/0> = (3.6 +/- 0.3) x 10(-36) C m of the electric dipolar moment p(x), a Herman-Wallis coefficient C0(5) of about -0.1, and a band strength of (5.1 +/- 1.3) x 10(-29) m at 293 K.  相似文献   

15.
The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.  相似文献   

16.
Rotationally resolved infrared absorption spectra for the 1(0)(1) band of jet cooled cobalt tricarbonyl nitrosyl have been observed and analyzed. Several longitudinal modes of a Pb-salt diode laser were utilized to measure 105 rovibrational transitions for this particular vibrational band centered near 2112 cm(-1). Spectra were optimized using both argon and helium carrier gases and these experiments eventually led to rovibrational transitions being assigned to four different K subbands, specifically the K = 0, 3, 6, and 9 subbands. An iterative least-squares analysis of the spectroscopic data yielded the following molecular parameters nu0 = 2111.7457(9) cm(-1), B0 = 0.034747(12) cm(-1), B1 = 0.034695(15) cm(-1), C1 = 0.03380(9) cm(-1), and D1K = 6.3(9) x 10(-6) cm(-1) (where 3sigma uncertainties are listed in parenthesis).  相似文献   

17.
研究了YbxY1-xAl3(BO3)4(Yb∶YAB)晶体的生长及光学性质,结果表明,以K2Mo3O10作为助熔剂生长Yb∶YAB晶体效果较好,根据测定的Yb∶YAB折射率计算的一类位相匹配角为θm(Ⅰ)=34°12′,与实验测定值θm(Ⅰ)=34°38′吻合较好。该晶体室温吸收谱在956和975nm处存在两个吸收带,适于InGaAs泵浦;室温π偏振吸收比σ偏振吸收略强;103和104μm处各存在一荧光峰,103μm处荧光寿命为1379ms;估算的发射截面数量级为10-21cm2  相似文献   

18.
Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.  相似文献   

19.
Hill CA  Thomas CL 《The Analyst》2005,130(8):1155-1161
The concept of using a short ionisation event, in this case a pulsed corona discharge, in conjunction with programmed gate delay is described. This technique is proposed for the selective study of different ionisation processes within the reaction region of an ion mobility spectrometer. The utility of such an approach was tested in a study of the ionisation of dipropylene-glycol-monomethyl-ether (DPM); a compound commonly used to test the operation of ion mobility spectrometers. Dipropylene-glycol-monomethyl-ether at a concentration of 113 microg m(-3) in air, with a water level of 75 mg m(-3) in air, was analysed using a switchable, high resolution ion mobility spectrometer, operating in the positive mode at 40 degrees C at ambient pressure. The ion mobility spectrometer was fitted with a pulsed corona discharge ionisation source, doped with ammonia at a concentration of 1.3 mg m(-3) in the reaction region, and interfaced to a mass spectrometer. Synchronisation of the ionisation event to the operation of the shutter grids for the drift region enabled different parts of the product ion population to be injected into the drift tube, and programming the gate delays produced a map of the gate delay verses drift time response surface. Ammonium bound dipropylene-glycol-monomethyl-ether was observed, [(DPM)NH4]+ (m/z 166) as well as the ammonium bound dimer [(DPM)2NH4]+ (m/z 314), the same as those observed with a 63Ni source. Two other species were also observed, but their molecular identity was not elucidated. One of them m/z 146, also observed with 63Ni, formed ammonium bound ions [(m/z 146)NH4]+ (K0= 1.49 cm2 V(-1) s(-1)), ammonium bound dimer ions [(m/z 146)2NH4]+(K0= 1.18 cm2 V(-1) s(-1)) and a mixed cluster ion with DPM [(m/z 146)(DPM)NH4]+(K0= 1.18 cm2 V(-1) s(-1)); while the other, m/z 88 a decomposition product, formed ammonium bound monomer [(m/z 88)NH4]+(K0= 1.68 cm2 V(-1) s(-1)), dimer ions [(m/z 88)2NH4]+(K0= 1.40 cm2 V(-1) s(-1)) and a mixed cluster ion containing DPM and ammonium, [(DPM)(m/z 88)2NH4]+(K0= 1.40 cm2 V(-1) s(-1)). The assignment of responses to these ions required the additional dimensionality in the data provided from the gate delay studies. The relationships evident in the programmable gate delay data enabled these ions to be differentiated from alternative assignments of possible nitrogen clusters, formed at the interface of the mass spectrometer.  相似文献   

20.
The rotationally resolved ultraviolet absorption cross sections for the 2(0)(0)4(1)(0) vibrational band of the A(1)A(2)-X(1)A(1) electronic transition of formaldehyde (HCHO) at an apodized resolution of 0.027 cm(-1) (approximately 0.0003 nm at 352 nm) over the spectral range 28100-28500 cm(-1) (351-356 nm) at 298 and 220 K, using Fourier transform spectroscopy, are first reported here. Accurate rotationally resolved cross sections are important for the development of in situ HCHO laser-induced fluorescence (LIF) instruments and for atmospheric monitoring. Pressure dependence of the cross sections between 75 and 400 Torr at 298 K was explored, and an average pressure broadening coefficient in dry air of 1.8 x 10(-4) cm(-1) Torr(-1) for several isolated lines is reported. Gaseous HCHO was quantitatively introduced into a flow cell by evaporating micron-sized droplets of HCHO solution, using a novel microinjector technique. The condensed-phase concentrations of HCHO were determined by iodometric titrations to an accuracy of <1%. Accuracy of the measured absorption cross sections is estimated to be better than +/-5%. Integrated and differential cross sections over the entire band at low resolution (approximately 1 cm(-1)) obtained with our calibration technique are in excellent agreement with previous measurements. A maximum differential cross section of 5.7 x 10(-19) cm(2) molecule(-1) was observed at high resolution-almost an order of magnitude greater than any previously reported data at low resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号