首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical investigation has been made of the laminar boundary layer that arises on the moving surface of a cylindrical body (Rankine oval with relative elongation 4) that moves with constant velocity in an incompressible fluid. The distributions of the frictional stress on the surface of the cylinder for different velocities of the wall motion are found. Numerical integration was employed to determine the work needed to overcome the frictional drag, the pressure, and also the work expended on the motion of the moving surface of the body in the case of constant velocity. In the presence of a separation region the drag forces are calculated under the assumption that in the separation region the pressure and the frictional stress on the wall are constant and equal to the corresponding values at the singular point of the solution of the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 3, pp. 171–174, May–June, 1984.I thank G. G. Chernyi for constant interest in the work and discussing the results.  相似文献   

2.
A study is made of the problem of the boundary layer on a cylinder with a moving surface when the cylinder moves with constant velocity in an incompressible fluid. Expressions are obtained for the distributions of the frictional stress on the surface of the cylinder and the coordinate of the singular point in the solution of the boundary layer equations that indicates the appearance of a region of reverse flow for different values of the relative velocity of the motion of the surface of the cylinder. Numerical calculations have been made of the work of the force of friction associated with displacement of the cylinder, the work expended on the motion of its surface, and, in the case of flow separation, the work of the pressure forces (it being assumed here that the pressure and friction on the wall behind the singular point are constant and equal to the pressure and friction at the singular point).  相似文献   

3.
Flow and heat transfer problems associated with three-dimensional compressible gas flow past a body of complex shape at a small angle of attack are investigated on the basis of a finite-difference calculation. The results of a numerical solution of the equations of the three-dimensional turbulent boundary layer are presented. The effect of the leading parameters on three-dimensional flow development and heat transfer is analyzed. The characteristic flow regions in the boundary layer are found: lines of divergence and convergence on the surface, separation zones and flow interfaces. The location of the maximum values of the heat flux and friction on the surface is determined, the behavior of the limiting streamlines on the body is described, and the intensity of the secondary flows in the boundary layer is estimated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 25–35, September–October, 1986.  相似文献   

4.
We consider a plane steady flow of incompressible fluid in the boundary layer which develops on a surface moving downstream. We obtain a singular solution of Prandtl's equations, continuously extendable through the simultaneous vanishing point of the friction and the longitudinal velocity vector component. Such a solution is realized, in particular, in a flow past a rotating circular cylinder.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 43–52, March–April, 1987.The author thanks A. I. Ruban for his great interest in the work and his useful remarks.  相似文献   

5.
Steady-state viscous incompressible fluid flow past an axisymmetric slender body is considered at high Reynolds numbers in the regime with vanishing surface friction in a certain cross-section. In a small neighborhood of this cross-section interaction between the boundary layer flow and the external irrotational stream develops. In order to study the structure of the three-dimensional flow with local separation zones it is assumed that there is three-dimensional roughness on the surface of the body with the scale of the interaction zone. For this zone a numerical solution of the problem is obtained and its nonuniqueness is established. The surface friction line (limiting streamline) patterns with their inherent features are constructed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–79, May–June, 1995.Thus, on the basis of the asymptotic marginal separation theory it is possible to obtain fairly simple solutions describing flows with a complex surface friction line structure.  相似文献   

6.
A flow of viscous compressible fluid in the neighborhood of the line of interaction of wall flows is considered. A method of calculating the line of interaction and the direction of the self-induced secondary flow is developed. Papers [1–3] are devoted to the simulation of a separation flow with singularities in the neighborhood of singular lines and points, where boundary-layer equations are invalid. However, the theories of local separation used at present have mainly been developed only for two-dimensional problems, while the models of viscous-inviscid interaction have restrictions in application for turbulent flows with developed separation. The interaction of three-dimensional wall turbulent flows is considered below. It is assumed that the thickness of the boundary layers and the scales of the interaction zones are small in comparison with the characteristic dimension of the system, while the line of discontinuity of the solutions of the three-dimensional boundary layer equations is the same as the line of interaction of the wall flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 53–59, March–April, 1987.The author is grateful to G. Yu. Stepanov and V. N. Ershov for their interest in my work and their valuable remarks.  相似文献   

7.
A method is proposed for calculating two-dimensional leading turbulent separation regions based on the use of integral relations of boundary layer theory and integral characteristics of a three-parameter family of locally similar velocity profiles. The method makes it possible to calculate the characteristics of a turbulent boundary layer, including friction and heat transfer, without separation of discontinuities and special regions and to do this in both attached and separated flow regions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 3, pp. 24–33, May–June, 1982.I thank V. N. Shmanenkov for interest in the work and L. V. Gogish for reading and discussing the draft.  相似文献   

8.
A complex flow consisting of an outer inviscid stream, a dead-water separation domain, and a boundary layer, which interact strongly, is formed in viscous fluid flows with separation at the streamlined profile with high Re numbers. Different jet and vortex models of separation flow are known for an inviscid fluid; numerical, asymptotic, and integral methods [1–3] are used for a viscous fluid. The plane, stationary, turbulent flow through a turbine cascade by a constant-density fluid without and with separation from the inlet edge of the profile and subsequent attachment of the stream to the profile (a short, slender separation domain) is considered in this paper.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 34–44, May–June, 1978.  相似文献   

9.
The phenomenon of the separation of a flow from the surface of a body, and the transfer of fluid which is slowed down in the boundary layer to the exterior flow, is of primary importance both in practice and in theory. From the practical point of view, flows with separation are important primarily because the separation of the boundary layer usually sets the upper limit of the efficiency, and therefore of the application, of many aerodynamic devices. From the theoretical point of view, the greatest importance lies in the problem of selecting the unique solution and the problem of elaborating effective numerical methods of studying flows with separation. The complexity of experimental research and the variety of problems connected with flow past bodies where separation occurs make the theoretical study of their general laws important. The aim of this work is to study separation zones and certain processes of controlling them on the basis of the full Navier—Stokes equations in the case of two-dimensional steady flows of a viscous incompressible fluid for moderately low Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 26–32, January–February, 1985.  相似文献   

10.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因.  相似文献   

11.
The mechanism of turbulent boundary layer separation under the influence of a positive pressure gradient is analyzed. The process of turbulent separation from a smooth wall in a plane diffuser channel has been experimentally investigated. It is shown that separation is determined by the nature of the flow in a certain inner part of the boundary layer, where the friction effect is unimportant. This region of the boundary layer is most exposed to the action of the positive pressure gradient and it is there that the stagnant zone primarily appears.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 69–77, November–December, 1990.  相似文献   

12.
A study is made of the flow of a viscous compressible gas in a hypersonic shock layer on sweptback wings of infinite span with blunt leading edge at different angles of attack. The equations of the hypersonic viscous shock layer with modified Rankine-Hugoniot relations across the shock wave and boundary conditions on the surface of the body that take into account slip and discontinuity of the temperature are solved by a method of successive approximation which yields not only an analytic solution for the first approximations but also an exact numerical solution when the method is implemented on a computer. The analytic solution of the problem is found in the first approximation. Expressions are obtained for the coefficients of friction and heat transfer on the surface of the body, and also for the profiles of the velocities and the temperature across the shock layer. Comparison of the analytic solution with the numerical solution reveals a satisfactory accuracy of the analytic solution for not too large Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 91–102, March–April, 1979.We thank G. A. Tirskii for his interest in the work and valuable discussions.  相似文献   

13.
The investigation of the effect of small polymer additives on the characteristics of the flow of a viscous liquid is, at the present time, one of the most promising approaches to the lowering of the friction resistance. One interesting question in this connection is the study of the effect of small polymer additives on the characteristics of the transitional region of flow in a boundary layer, as well as on the value of the friction resistance with the presence of laminar, transitional, and turbulent sections in the boundary layer. The article sets forth a possible method for calculation of a plane boundary layer and the friction resistance for the case of the motion of a body in weak polymer solutions with a constant concentration, taking account of the change in the flow conditions in the layer and based on the use of integral relationships. Questions connected with the development of a boundary at a body, with the feeding of a polymer in it, as well as with the effect of degradation or destruction of the polymer in the solution, are not discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–48, May–June, 1977.  相似文献   

14.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The boundary layer flow of a viscoelastic fluid of the second-grade type over a rigid continuous plate moving through an otherwise quiescent fluid with constant velocity U is studied. Assuming the flow to be laminar and two-dimensional, local similarity solution is found with fluid's elasticity and plate's withdrawal speed as the main variables. Results are presented for velocity profiles, boundary layer thickness, wall skin friction coefficient and fluid entrainment in terms of the local Deborah number. A marked formation of boundary layer is predicted, even at low Reynolds numbers, provided the Deborah number is sufficiently large. The boundary layer thickness and the wall skin friction coefficient are found to scale with fluid's elasticity—both decreasing the higher the fluid's elasticity. The amount of fluid entrained is also predicted to decrease whenever a fluid exhibits elastic behavior.  相似文献   

16.
Many theoretical and experimental papers [1–4] have been devoted to investigating the turbulent boundary layer in the initial section of a channel. For the most part, however, the flow of an incompressible fluid with constant parameters is considered. There are many practical cases in which it is of interest to treat the development of the turbulent boundary layer of gas in the initial section of a pipe when conditions are strongly nonisothermal. A solution of a problem of this type, based on the theory of limit laws, is given in paper [1]. The present article extends this solution to the case of the flow of a high-enthalpy gas when the effect of gas dissociation on the turbulent boundary layer characteristics must be taken into account. We shall consider the flow of a mixture of i gases which is in a frozen state inside the boundary layer, and in an equilibrium state on its boundaries. Formulas are derived for the laws of friction and heat exchange, and a solution is given for the turbulent boundary layer equations in the initial section of the pipe when the wall temperature is constant and the gas flows at a subsonic velocity.Finally the authors are grateful to S. S. Kutateladze for discussing the paper.  相似文献   

17.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

18.
One of the methods of reducing the frictional resistance of bodies moving in water is the discharge of a water-soluble polymer admixture into the turbulent boundary layer on the surface of the body. For dilute polymer solutions having constant concentration, existing semiempirical methods of calculation which use information on the effect of long molecules on the rearrangement of the flow in the boundary layer enable one to calculate the resistance of smooth and rough tubes [1] with sufficient accuracy and to analyze effects of the redistribution of local tangential stresses on the surface of plane plates [2]. Methods of calculating the drag of plates that have been developed up to the present time are also suitable for predicting the reduction of turbulent friction of elongated bodies by polymer admixtures. It is of interest to generalize these methods to the case of variable concentration. Below we consider the problem of calculating the turbulent boundary layer on a plane plate when a polymer solution is injected near its leading edge. For its solution we use the simplifying assumption that it is possible to replace the actual distribution of the concentration of polymer admixtures along a normal to the surface of the plate with an effective uniform distribution. This assumption enables us to estimate the discharge rate of the polymer that is required to obtain a given reduction in the frictional resistance.  相似文献   

19.
The problem of the laminar boundary layer formed on the surface of a semiinfinite plate with a perpendicular semi-infinite circular cylinder in a uniform steady incompressible flow normal to the leading edge is considered. Near its sharp edge the plate has a stationary part and, located at a finite distance further downstream, a part of the surface moving downstream at a constant velocity. The first-order boundary layer equations are solved numerically by an implicit finite-difference method. The effect of the moving wall on the variation of the dimensions of the separation zone ahead of the obstacle over a broad range of the governing parameters and flow characteristics is investigated. The flow in the laminar boundary layer on the surface of a plate ahead of such an obstacle was calculated in [1, 2] without motion of the wall. Data on the structure of the separated flow are given in [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 49–53, November–December, 1990.  相似文献   

20.
The asymptotic method of outer and inner expansions is used to analyze the flow of a multicomponent gas in a three-dimensional boundary layer on a smooth blunt body with large injection. Asymptotic expressions are derived for the friction coefficients, the heat and diffusion fluxes of the components on the surface of the body, and the velocity, temperature, and concentration profiles of the components across the layer of injected gases. It is shown that with large injection the limiting (bottom) streamlines on the surface of the body coincide in the first approximation with the vectorial lines of the pressure gradient.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 47–56, March–April, 1975.The author is indebted to G. A. Tirskii for a discussion of the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号