首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a nonstandard version of the principle of virtual power, we develop general balance equations and boundary conditions for second-grade materials. Our results apply to both solids and fluids as they are independent of constitutive equations. As an application of our results, we discuss flows of incompressible fluids at small-length scales. In addition to giving a generalization of the Navier–Stokes equations involving higher-order spatial derivatives, our theory provides conditions on free and fixed boundaries. The free boundary conditions involve the curvature of the free surface; among the conditions for a fixed boundary are generalized adherence and slip conditions, each of which involves a material length scale. We reconsider the classical problem of plane Poiseuille flow for generalized adherence and slip conditions.  相似文献   

2.
In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geometrically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution exhibits large slip gradients within a thin layer at the grain boundary.  相似文献   

3.
We establish conditions for the existence of continuous solutions of systems of linear functional difference equations with linearly transformed argument and develop a method for the construction of these solutions.  相似文献   

4.
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.  相似文献   

5.
We establish constructive conditions for the existence of solutions of an autonomous Noetherian weakly nonlinear boundary-value problem for a system of ordinary differential equations in the critical case and develop a modified iterative procedure for finding its solutions.  相似文献   

6.
The purpose of the present study is to develop a phenomenological theory for elastic superconductors that is based on a rigorous thermodynamical internal variable theory in which the concept of complex internal variable is introduced to include the phase effect of quantum mechanics. Two phenomena of superconductivity, i.e., perfect conductivity and perfect diamagnetism, can be explained in the formulation. In the equilibrium state, this theory can be reduced to the well-known Ginzburg-Landau (GL) theory. Upon linearizing the field equations, boundary conditions and constitutive equations, the governing equations of the rigid-body state and the perturbed state are obtained. These equations then serve to analyze the effect of the hydrostatic deformation on the penetration depth, the GL coherence length and the critical field.  相似文献   

7.
The method of non-standard finite elements was used to develop multilevel difference schemes for linear and quasilinear hyperbolic equations with Dirichlet boundary conditions. A closed form equation of kth-order accuracy in space and time (Otk, Δxk)) was developed for one-dimensional systems of linear hyperbolic equations with Dirichlet boundary conditions. This same equation is also applied to quasilinear systems. For the quasilinear systems a simple iteration technique was used to maintain the kth-order accuracy. Numerical results are presented for the linear and non-linear inviscid Burger's equation and a system of shallow water equations with Dirichlet boundary conditions.  相似文献   

8.
We develop a numerical method for simulating models of two‐phase gel dynamics in an irregular domain using a regular Cartesian grid. The models consist of transport equations for the volume fractions of the two phases, polymer network and solvent; coupled momentum equations for the two phases; and a volume‐averaged incompressibility constraint. Multigrid with Vanka‐type box relaxation scheme is used as a preconditioner for the Krylov subspace solver (GMRES) to solve the momentum and incompressibility equations. Ghost points are used to enforce no‐slip boundary conditions for the velocity field of each phase, and no‐flux boundary conditions for the volume fractions. The behavior of the new method, including its rate of convergence, is explored through numerical experiments for a problem in which strong phase separation develops from an initially (almost) homogeneous phase distribution. We also use the method to explore situations, motivated by biology, which show that imposed boundary velocities can cause substantial redistribution of network and solvent. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
10.
11.
12.
The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have lead to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary-value problems. In this paper, we develop an analytic solution to the axisymmetric problem of an infinitely long, radially polarized, radially orthotropic piezoelectric hollow circular cylinder. The cylinder is subjected to uniform internal pressure, or a constant potential difference between its inner and outer surfaces, or both. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. The stress distributions in the cylinder are obtained numerically for two typical piezoceramics of technological interest, namely PZT-4 and BaTiO3. It is shown that the hoop stresses in a cylinder composed of these materials can be made virtually uniform throughout the cross-section by applying an appropriate set of boundary conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Part 2 deals with the evolution of plastic flow resistance with crack growth from its minimum value (fatigue limit) towards its saturated bulk value (cyclic yield stress). The far-field stress level, the geometry of the crack and the grain size distribution of the material are those parameters that control the area of crack tip plasticity and hence the rate towards saturation. The implication of the far-field stress is held responsible for the violation of the similitude concept and the failure of the stress intensity factor to describe conditions of short cracking. However, an engineering tool based on the stress intensity factor and being able to predict the fatigue life of short cracks can be constructed, considering that the distribution of crack growth rates is intrinsically defined by the material itself. The above allows the development of a set of equations able to construct the fatigue life scatter of the material.  相似文献   

14.
We propose a resolution of d’Alembert’s Paradox comparing observation of substantial drag/lift in fluids with very small viscosity such as air and water, with the mathematical prediction of zero drag/lift of stationary irrotational solutions of the incompressible inviscid Euler equations, referred to as potential flow. We present analytical and computational evidence that (i) potential flow cannot be observed because it is illposed or unstable to perturbations, (ii) computed viscosity solutions of the Euler equations with slip boundary conditions initiated as potential flow, develop into turbulent solutions which are wellposed with respect to drag/lift and which show substantial drag/lift, in accordance with observations.  相似文献   

15.
We develop a new method for the efficient calculation of solenoidal vector fields on general regions. The method takes advantage of fast direct methods and uses boundary integral equations to satisfy boundary conditions. For the latter we give an effective scheme for computing far-field boundary influences (based on discrete charges). Examples and numerical results are given. The method is applicable to incompressible Navier-Stokes calculations.  相似文献   

16.
The aim of this paper is to develop a methodology for solving the incompressible Navier–Stokes equations in the presence of one or several open boundaries. A new set of open boundary conditions is first proposed. This has been developed in the context of the velocity–vorticity formulation, but it is also emphasized how it can be formally extended to the equations in primitive variables. The case of a domain involving several independent open boundaries is considered next. An influence matrix technique is applied such that the inlet mass flux is split onto the several outlets in order to enforce the prescribed mean pressure at each outlet. Both approaches are validated by numerical test cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents an adjoint method for the calculation of remote sensitivities in supersonic flow. The goal is to develop a set of discrete adjoint equations and their corresponding boundary conditions in order to quantify the influence of geometry modifications on the pressure distribution at an arbitrary location within the domain of interest. First, this paper presents the complete formulation and discretization of the discrete adjoint equations. The special treatment of the adjoint boundary condition to obtain remote sensitivities or sensitivities of pressure distributions at points remotely located from the wing surface are discussed. Secondly, we present results that demonstrate the application of the theory to a three-dimensional remote inverse design problem using a low sweep biconvex wing and a highly swept blunt leading edge wing. Lastly, we present results that establish the added benefit of using an objective function that contains the sum of the remote inverse and drag minimization cost functions.  相似文献   

18.
We discuss ordinary differential equations with delay and memory terms in Hilbert spaces. By introducing a time derivative as a normal operator in an appropriate Hilbert space, we develop a new approach to a solution theory covering integro-differential equations, neutral differential equations and general delay differential equations within a unified framework. We show that reasonable differential equations lead to causal solution operators.  相似文献   

19.
Under certain conditions, an indeterminate solution exists to the equations of motion for dynamic elastic–plastic deformation of materials using constitutive laws based on non-associated flow that suggests that an initially unbounded dynamic perturbation in the stress can develop from a quiescent state on the yield surface. The existence of this indeterminate solution has been alleged to discourage use of non-associated flow rules for both dynamic and quasi-static analysis theoretically. It is shown in this paper that the indeterminate solution that may solve the equations of motion is intrinsically dynamic, and it determinately goes to zero in the quasi-static limit regardless of other indeterminate parameters. Consequently, the existence of this unstable dynamic solution has no impact on stability and use of non-associated flow rules for analysis of the quasi-static problem. More importantly, for dynamic applications, it is also shown that the indeterminate solution solves the equations of motion only if critical restrictions are applied to the constitutive equations such that the effective modulus during loading is constant and the direction of the perturbation is unidirectional over a finite time interval. It is shown that common components of the constitutive laws used in metal forming and deformation analysis are inconsistent with these restrictions. So, these common models can be generalized to include non-associated flow for analysis of the dynamic problem without concern that the solution will become indeterminate.  相似文献   

20.
To develop objective constitutive equations, local frames which translate and rotate with the fluid particle can be used. For example, the corotating frame rotates such that the curl of the velocity calculated in this frame vanishes. From the corotating frame, the Jaumann derivative can be derived. In this paper, a new local frame is developed which causes the cross product of the velocity and acceleration to vanish and is designated as the rigid-rotating frame. The corotating and rigid-rotating frames rotate identically for a rigid-body rotation of the fluid, but rotate differently in flows that contain shearing. This difference in rotation can be used to develop an objective rotation tensor that can be applied to constitutive equations for viscoelastic liquids. The rigid-rotating frame can also be used to develop a rheological time derivative which has been designated the rigid-rotating derivative. These new quantities expand the traditional set of kinematical variables and invariants available for use in constitutive equations. Use of this expanded set of kinematic variables is demonstrated in limiting constitutive equations. Received: 1 March 1999 Accepted: 5 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号