首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Gradient elasticity for a second gradient model is addressed within a suitable thermodynamic framework apt to account for nonlocality. The pertinent thermodynamic restrictions upon the gradient constitutive equations are derived, which are shown to include, besides the field (differential) stress–strain laws, a set of nonstandard boundary conditions. Consistently with the latter thermodynamic requirements, a surface layer with membrane stresses is envisioned in the strained body, which together with the above nonstandard boundary conditions make the body constitutively insulated (i.e. no long distance energy flows out of the boundary surface due to nonlocality). The total strain energy is shown to include a bulk and surface strain energy. A minimum total potential energy principle is provided for the related structural boundary-value problem. The Toupin–Mindlin polar-type strain gradient material model is also addressed and compared with the above one, their substantial differences are pointed out, particularly for what regards the constitutive equations and the boundary conditions accompanying the solving displacement equilibrium equations. A gradient one-dimensional bar sample in tension is considered for a few applications of the proposed theory.  相似文献   

2.
3.
4.
The indentation response of Ni thin films of thicknesses in the nanoscale was studied using molecular dynamics simulations with embedded atom method (EAM) interatomic potentials. A series of simulations were performed in films in the [1 1 1] orientation with thicknesses varying from 4 to 12.8 nm. The study included both single crystal films and films containing low angle grain boundaries perpendicular to the film surface. The simulation results for single crystal films show that as film thickness decreases larger forces are required for similar indentation depths but the contact stress necessary to emit the first dislocation under the indenter is nearly independent of film thickness. The low angle grain boundaries can act as dislocation sources under indentation. The mechanism of preferred dislocation emission from these boundaries operates at stresses that are lower as the film thickness increases and is not active for the thinnest films tested. These results are interpreted in terms of a simple model.  相似文献   

5.
6.
The purpose of this work was to characterize the spatial distribution of residual deformation at the mesoscale (a few grains) and at the macroscale (hundreds of grains) in titanium subjected to cyclic tensile loading. Using ex situ digital image correlation, we compared the axial residual strain fields obtained at optical magnifications ranging from 3.2× to 50×. To compare the results obtained at different optical magnifications, numerous images at higher magnification had to be assembled to encompass the same field-of-view observed at lower magnifications. The strain fields at the highest optical magnification revealed deformation patterns that were not detectable at lower magnifications. These deformation patterns appeared as inclined slip bands near grain boundaries and grain boundary triple points, with the bands sometimes crossing into neighboring grain interiors. Measurements made at optical magnifications greater than 10× captured an underlying deformation pattern, however, considerably more detail within grains was obtained at 50× magnification. The strain fields obtained at 10× and 50× magnifications were subsequently used to estimate the length scale of a representative volume element (RVE) based on the standard deviation of the average residual strain. The estimated RVE length scale was nearly three times the average grain diameter if extracted from the 50× results. The estimate of the RVE length scale was smaller at lower magnification which was due to a homogenizing effect caused by the low measurement resolution. Thus, care must be taken when experimentally obtaining RVE length scale estimates.  相似文献   

7.
The orientation dependent plasticity in metal nanowires is investigated using molecular dynamics and dislocation dynamics simulations. Molecular dynamics simulations show that the orientation of single crystal metal wires controls the mechanisms of plastic deformation. For wires oriented along , dislocations nucleate along the axis of the wire, making the deformation homogeneous. These wires also maintain most of their strength after yield. In contrast, wires oriented along and directions deform through the formation of twist boundaries and tend not to recover when high angle twist boundaries are formed. The stability of the dislocation structures observed in molecular dynamics simulations are investigated using analytical and dislocation dynamics models.  相似文献   

8.
A model of evolving martensitic microstructures is formulated that incorporates the interfacial energy and dissipation on three different scales corresponding to the grain boundaries attained by martensite plates, the interfaces between austenite and martensite plates, and the twin interfaces within martensite plates. Three different time scales are also considered in order to clarify the meaning of rate-independent dissipation related to instabilities at more refined temporal and spatial scales. On the slowest time scale, the process of deformation and martensitic phase transformation is investigated as being composed of segments of smooth quasi-static evolution separated by sudden jumps associated with creation or annihilation of interfaces. A general evolution rule is used in the form of minimization of the incremental energy supply to the whole compound thermodynamic system, including the rate-independent dissipation. Close relationship is shown between the evolution rule and the thermodynamic condition for stability of equilibrium, with no a priori assumption on convexity of the dissipation function. It is demonstrated that the extension of the minimum principle from the first-order rates to small but finite increments requires a separate symmetry restriction imposed on the state derivative of the dissipation function. Formulae for the dissipation associated with annihilation of interfaces are proposed that exhibit limited path-independence and satisfy that symmetry requirement. By exploiting the incremental energy minimization rule with the help of the transport theorems, local propagation conditions are derived for both planar and curved phase transformation fronts. The theory serves as a basis for the algorithm for calculation of the stress-induced evolution of martensitic microstructures along with their characteristic dimensions and related hysteresis loops in shape memory alloys; the examples are given in Part II of the paper.  相似文献   

9.
In this paper, interfacial excess energy and interfacial excess stress for coherent interfaces in an elastic solid are reformulated within the framework of continuum mechanics. It is shown that the well-known Shuttleworth relationship between the interfacial excess energy and interfacial excess stress is valid only when the interface is free of transverse stresses. To account for the transverse stress, a new relationship is derived between the interfacial excess energy and interfacial excess stress. Dually, the concept of transverse interfacial excess strain is also introduced, and the complementary Shuttleworth equation is derived that relates the interfacial excess energy to the newly introduced transverse interfacial excess strain. This new formulation of interfacial excess stress and excess strain naturally leads to the definition of an in-plane interfacial stiffness tensor, a transverse interfacial compliance tensor and a coupling tensor that accounts for the Poisson's effect of the interface. These tensors fully describe the elastic behavior of a coherent interface upon deformation.  相似文献   

10.
An elastic, incompressible, infinite body is considered subject to plane and homogeneous deformation. At a certain value of the loading, when the material is still in the elliptic range, an incremental concentrated line load is considered acting at an arbitrary location in the body and extending orthogonally to the plane of deformation. This plane strain problem is solved, so that a Green's function for incremental, nonlinear elastic deformation is obtained. This is used in two different ways: to quantify the decay rate of self-equilibrated loads in a homogeneously stretched elastic solid; and to give a boundary element formulation for incremental deformations superimposed upon a given homogeneous strain. The former result provides a perturbative approach to shear bands, which are shown to develop in the elliptic range, induced by self-equilibrated perturbations. The latter result lays the foundations for a rigorous approach to boundary element techniques in finite strain elasticity.  相似文献   

11.
An enhanced mechanical model for simulating ship body oscillations and both the induced fluxural and twisting vibrations of the hull in the case of longitudinal seas is presented. The onset of parametric rolling, which may result from nonlinearly coupled heave-pitch-roll motions, and the effects of bending and torsional elasticity of the hull are considered in detail. It is shown that in the above sea conditions the flexural and/or twisting vibrations are likely to occur under a mechanism similar to that of parametric rolling.  相似文献   

12.
The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy (SMA) are studied by a microstructure-based constitutive model developed in this paper. The model is established on the following basis: (1) the transformation conditions of the unconstrained single crystal SMA microdomain (to be distinguished from the bulk single crystal), which serve as the local criterion for the derivation of overall transformation yield conditions of the polycrystal; (2) the micro- to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived; (3) the quantitative incorporation of three microstructure factors (i.e., nucleation, growth and orientation distribution of martensite) into the modeling. These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quantitatively modeled. It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response, the latter will lead to the localization and propagation of transformation bands in TiNi SMA. The project supported by the Research Grant Committee (RGC) of Hong Kong SAR, the National Natural Science Foundation of China and the Provincial Natural Foundation of Jiangxi Province of China  相似文献   

13.
Based on the microstructure-based constitutive model established in Part I, a detailed numerical investigation on the role of each microstructure parameter in the kinematical and kinetic evolution of polycrystalline SMA under axisymmetrical tension loading is performed. Some macroscopic constitutive features of stress-induced martensite transformation are discussed. The subject supported by the Research Grant Committee (RGC) of Hong Kong SAR, the National Natural Science Foundation of China and the Provincial Natural Science Foundation of Jiangxi Province of China  相似文献   

14.
Strain-gradient elasticity is widely used as a suitable alternative to size-independent classical continuum elasticity to, at least partially, capture elastic size effects at the nanoscale. In this work, borrowing methods from statistical mechanics, we present mathematical derivations that relate the strain-gradient material constants to atomic displacement correlations in a molecular dynamics computational ensemble. Using the developed relations and numerical atomistic calculations, the strain-gradient constants are explicitly determined for some representative semiconductor, metallic, amorphous and polymeric materials. This method has the distinct advantage that amorphous materials can be tackled in a straightforward manner. For crystalline materials we also employ and compare results from both empirical and ab initio based lattice dynamics. Apart from carrying out a systematic tabulation of the relevant material parameters for various materials, we also discuss certain subtleties of strain-gradient elasticity, including: the paradox associated with the sign of the strain-gradient constants, physical reasons for low or high characteristic length scales associated with the strain-gradient constants, and finally the relevance (or the lack thereof) of strain-gradient elasticity for nanotechnologies.  相似文献   

15.
This paper is a continuation of the Part I (H. Petryk, S. Stupkiewicz, Interfacial energy and dissipation in martensitic phase transformations. Part I: Theory. J. Mech. Phys. Solids, 2010, doi:10.1016/j.jmps.2009.11.003). A fully three-dimensional model of an evolving martensitic microstructure is examined, taking into account size effects due to the interfacial energy and also dissipation related to annihilation of interfaces. The elastic micro-strain energy at microstructured interfaces is determined with the help of finite element computations and is approximated analytically. Three interface levels are examined: of grain boundaries attained by parallel martensite plates, of interfaces between austenite and twinned martensite, and of twin interfaces within the martensite phase. Minimization of the incremental energy supply, being the sum of the increments in the free energy and dissipation of the bulk and interfacial type at all levels, is used as the evolution rule, based on the theory presented in Part I. An example of the formation and evolution of a rank-three laminated microstructure of finite characteristic dimensions in a pseudoelastic CuAlNi shape memory alloy is examined quantitatively.  相似文献   

16.
Superimposed dynamic, time-harmonic incremental deformations are considered in an elastic, orthotropic and incompressible, infinite body, subject to plane, homogeneous—but otherwise arbitrary—deformation. The dynamic, infinite body Green's function is found and, in addition, new boundary integral equations are obtained for incremental in-plane hydrostatic stress and displacements. These findings open the way to integral methods in incremental, dynamic elasticity. Moreover, the Green's function is employed as a dynamic perturbation to analyze interaction between wave propagation and shear band formation. Depending on anisotropy and pre-stress level, peculiar wave patterns emerge with focussing and shadowing effects of signals, which may remain undetected by the usual criteria based on analysis of weak discontinuity surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号