首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural and conformational properties of etheneselenocyanate (H2C=CHSeC[triple bond]N) have been explored by microwave spectroscopy and quantum chemical calculations performed at the MP2/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels of theory. The spectra of two rotameric forms were assigned. The more stable form has a synperiplanar conformation, whereas the less stable form has an anticlinal conformation characterized by a C-C-Se-C dihedral angle of 163(3) degrees from the synperiplanar position (0 degrees). The synperiplanar form was found to be 4.5(4) kJ/mol more stable than the anticlinal form by relative intensity measurements performed on microwave transitions. The spectra of several isotopologues and two vibrationally excited states were assigned for the synperiplanar conformer. The anticlinal rotamer displays a complicated pattern of low-frequency vibrational states, which is assumed to reflect the existence of a small potential hump at the antiperiplanar (180 degrees) conformation. The predictions made in the MP2 and B3LYP calculations are in reasonably good agreement with the experimental results in some cases, whereas rather large differences are seen for other molecular properties.  相似文献   

2.
The microwave spectrum of propa-1,2-dienyl thiocyanate (H2C=C=CHSC triple bond N) has been investigated in the 24-40 and 50-80 GHz spectral regions. The spectrum of one conformer was assigned. This rotamer, which has a C-C-S-C dihedral angle of about 134 degrees from synperiplanar, is at least 2 kJ/mol more stable than any other form. Two vibrationally excited states assumed to belong to the first excited state of the C-S torsional vibration and to a low bending mode were assigned. Their frequencies were determined to be 62(20) and 155(30) cm-1, respectively. The microwave work has been augmented by ab initio calculations at the MP2/aug-cc-pVTZ and density functional theory calculations at the B3LYP/aug-cc-pVTZ level of theory. The B3LYP calculations are generally in better agreement with the observations than the MP2 calculations.  相似文献   

3.
The microwave spectra of CF3COSH and one deuterated species, CF3COSD, have been investigated by Stark spectroscopy in the 40-80 GHz spectral range at -78 degrees C and by quantum chemical calculations using the HF, MP2, and B3LYP procedures with the aug-cc-pVTZ basis set. The microwave spectrum of one conformer was assigned. The conformations of the COSH and CF3 groups determine the overall conformation of this rotamer. It was not possible experimentally to find precise values for the associated dihedral angles, but it appears that the COSH group is distorted somewhat from an exact synperiplanar arrangement, while the CF3 group is rotated several degrees from a position where one of the C-F bonds eclipses the C-S bond. This rotamer tunnels through a transition state that has an exact Cs symmetry, where one C-F bond eclipses the C-S bond and the COSH group is synperiplanar. Relative intensity measurements yielded 28(15) cm-1 for the tunneling frequency. Two additional vibrationally excited states were assigned and their frequencies determined to be 94(30) and 184(40) cm-1, respectively. The theoretical calculations predict conflicting conformational properties for the identified rotamer. The B3LYP calculations find an exact synperiplanar arrangement for the COSH group, whereas the MP2 and HF calculations predict that this group is distorted slightly form this conformation. One of the C-F bonds is found to eclipse the C-S bond in the B3LYP calculations, while the MP2 calculations predict a slight deviation and the HF calculations a large deviation from the eclipsed position, as the corresponding F-C-C-S dihedral angle is calculated to be 0.9 degrees (MP2) and 27.6 degrees (HF). All three methods of calculations predict that a second rotamer coexists with the identified form but is several kJ/mol less stable. The spectrum of this form, which has overall Cs symmetry and is predicted to have an antiperiplanar conformation for the COSH group with one of the C-F bonds eclipsing the C=O bond, was not identified.  相似文献   

4.
The microwave spectrum of cyclopropaneselenol, C 3H 5SeH, has been investigated in the 21.9-80 GHz frequency range. The microwave spectra of the ground vibrational state of five isotopologues of cyclopropaneselenol (C 3H 5 (82)SeH, C 3H 5 (80)SeH, C 3H 5 (78)SeH, C 3H 5 (77)SeH, and C 3H 5 (76)SeH) of one conformer, as well as the spectra of two vibrationally excited states of each of the C 3H 5 (80)SeH and C 3H 5 (78)SeH isotopologues of this rotamer, have been assigned. The H-C-Se-H chain of atoms is synclinal in this conformer, and there is no indication of further rotameric forms in the microwave spectrum. The b-type transitions of the ground vibrational state of the more abundant species C 3H 5 (80)SeH and C 3H 5 (78)SeH were split into two components, which is assumed to arise from tunneling of the proton of the selenol group between two equivalent synclinal potential wells. The tunneling frequencies were 0.693(55) MHz for C 3H 5 (80)SeH and 0.608(71) MHz for C 3H 5 (78)SeH. The microwave study has been augmented by high-level density functional and ab initio quantum chemical calculations, which indicate that the H-C-Se-H dihedral angle is approximately 75 degrees from synperiplanar (0 degrees).  相似文献   

5.
Preparation, X-Ray and 1 H-Wide-Line-Resonance Studies of Alkali Germyl Compounds, GeH 3 M The alkali germyls GeH 3 M (M = Li, Na, K, Rb, Cs) have been prepared from germane and the corresponding alkali metals. GeH 3 K, GeH 3 Rb and GeH 3 Cs could be obtained as crystalline solids. It has been shown from X-ray single-crystal studies that GeH 3 Cs has a structure of the TlI-type with the unusual coordination number 7. 1 H-wide-line-resonance investigations show that the rotations of the germyl groups are frozen in at low temperatures. From the observed 2. moment of the fixed germyl groups a H? Ge? H valence augle of 92.5±4°has been determined.  相似文献   

6.
The structural and conformational properties of 1-fluorocyclopropanecarboxylic acid have been explored by microwave spectroscopy and a series of ab initio (MP2/6-311++G(d,p) level), density functional theory (B3LYP/aug-cc-pVTZ level), and G3 quantum chemical calculations. Four "stable" conformers, denoted conformers I-IV, were found in the quantum chemical calculations, three of which (conformers I -III) were predicted to be low-energy forms. Conformer I was in all the quantum chemical calculations predicted to have the lowest energy, conformer III to have the second lowest energy, and conformer II to have the third lowest energy. Conformers II and III were calculated to have relatively large dipole moments, while conformer I was predicted to have a small dipole moment. The microwave spectrum was investigated in the 18-62 GHz spectral range. The microwave spectra of conformers II and III were assigned. Conformer I was not assigned presumably because its dipole moment is comparatively small. Conformer II is stabilized by an intramolecular hydrogen bond formed between the fluorine atom and the hydrogen atom of the carboxylic acid group. Conformer III has a synperiplanar orientation for the F-C-C=O and H-O-C=O chains of atoms. Its dipole moment is: mua = 3.4(10), mub = 10.1(13), and muc = 0.0 (assumed) and mu(tot) = 10.6(14) x 10(-30) C m [3.2(4) D]. Several vibrationally excited states of the lowest torsional mode of each of II and III were also assigned. The hydrogen-bonded conformer II was found to be 2.7(2) kJ/mol less stable than III by relative intensity measurements. Absolute intensity measurements were used to show that the unassigned conformer I is the most abundant form present at a concentration of roughly 65% at room temperature. Conformer I was estimated to be ca. 5.0 kJ/mol more stable than the hydrogen-bonded rotamer (conformer II) and ca. 2.3 kJ/mol more stable than conformer III. The best agreement with the theoretical calculations is found in the MP2 calculations, which predict conformer I to be 5.1 kJ/mol more stable than III and 1.7 kJ/mol more stable than II.  相似文献   

7.
The microwave spectra of propa-1,2-dienyl selenocyanate, H(2)C==C==CHSeC[triple bond]N, and cyclopropyl selenocyanate, C(3)H(5)SeC[triple bond]N, are reported. The spectra of the ground and two vibrationally excited states of the (80)Se isotopologue and the spectrum of the ground state of the (78)Se isotopologue were assigned for one rotameric form of H(2)C==C[double bond, length as m-dash]CHSeC[triple bond]N. This conformer is characterized by a C-C-Se-C dihedral angle of 129(5) degrees from synperiplanar (0 degrees ) and is shown to be the global minimum of H(2)C[double bond, length as m-dash]C[double bond, length as m-dash]CHSeC[triple bond]N. The spectra of the ground and of three vibrationally excited states of the (80)Se isotopologue, as well as of the ground state of the (78)Se isotopologue of one rotamer of C(3)H(5)SeC[triple bond]N were assigned. This conformer has a H-C-Se-C dihedral angle of 80(4) degrees from synperiplanar and is at least 3 kJ mol(-1) more stable than any other form of the molecule. The microwave study has been augmented by quantum chemical calculations at the B3LYP/6-311+ +G(3df,3pd) and MP2/6-311+ +G(3df,3pd) levels of theory.  相似文献   

8.
The structural and conformational properties of allytrifluorsilane, H2CCH-CH2-SiF3, have been explored by microwave (MW) spectroscopy and high-level ab initio and density functional theory quantum chemical calculations. The microwave spectrum was investigated in the 18-62 GHz spectral regions. The a-type R-branch transitions of one conformer were assigned for the ground as well as for 10 vibrationally excited states. The CC-C-Si chain of atoms in this rotamer takes an anti-clinal (‘skew’) conformation, with a dihedral angle calculated to be 111.6° from the syn-periplanar (0°) conformation. The question whether a CC-C-Si syn-periplanar conformer exists as a high-energy form in the gas phase remains open. In most of the quantum chemical calculations this conformation is predicted to be a transition state. However, in the most advanced calculations (B3LYP/aug-cc-pVTZ level of theory) the syn-periplanar conformer is predicted to be a stable rotamer that is calculated to be 6.5 kJ/mol higher in energy than the anti-clinal form. Since there is no indication in the MW spectrum for the presence of high-energy form(s), it is concluded that the anti-clinal conformer is at least 4 kJ/mol more stable than any other hypothetical rotamer.  相似文献   

9.
We have obtained microwave spectra of fully and partially deuterated germyl halides GeD3X and GeHD2X (X = F, Cl, Br, I) and analysed the infrared spectra in the GeH stretching region of the asymmetric species. The resulting Ao and Bo values have been combined with existing data on GeH3X to give improved structures for the germyl halides. The values of the HGeX angles obtained show a correlation with GeH stretching frequencies, as in methyl compounds, but there appears to be no such correlation between stretching frequencies and GeH bond lengths.  相似文献   

10.
The kinetically unstable compound 3-mercapto-2-propenenitrile (HS-CH=CH-C[triple bond]N) has been prepared for the first time by flash vacuum pyrolysis at 800 degrees C of 3-(tert-butylthio)-2-propenenitrile with a yield of 77% and a Z:E ratio of 8:1. Several deuterium and 15N isotopologues were also prepared using isotopically enriched compounds. Quantum chemical calculations of the structural and conformational properties of the Z- and E-isomers were undertaken at the B3LYP/6-311++G(3df,2pd), MP2/6-311++G(3df,2pd), MP2/aug-cc-pVTZ, and G3 levels of theory. These methods all predict that the Z- and the E-forms each have two "stable" planar rotameric forms with the H-S-C=C link of atoms in either a synperiplanar or an antiperiplanar conformation, with the synperiplanar form of the Z-isomer as the global minimum. The Z-isomer has been investigated by means of Stark-modulation microwave spectroscopy. Spectra attributable to the parent and three deuterium-substituted isotopologues of a single conformer were recorded and assigned. Additionally, the spectrum belonging to the first excited state of the lowest bending vibration was assigned. The ground-state rotational constants obtained by the least-squares analysis of these transitions were found to be in excellent agreement with the corresponding approximate equilibrium values generated by the MP2/aug-cc-pVTZ calculations. The preferred conformer of this molecule was found to have a synperiplanar arrangement of the H-S-C=C chain of atoms and a planar or nearly planar geometry, with a stabilizing intramolecular hydrogen bond formed between the H atom of the thiol group and pi-electron density associated with the C[triple bond]N triple bond. The possible astrochemical/astrobiological significance of this compound is discussed.  相似文献   

11.
The infrared and Raman spectra of methyl, silyl, and germyl azide (XN3 where X=CH3, SiH3 and GeH3) have been predicted from ab initio calculations with full electron correlation by second order perturbation theory (MP2) and hybrid density function theory (DFT) by the B3LYP method with a variety of basis sets. These predicted data are compared to previously reported experimental data and complete vibrational assignments are provided for all three molecules. It is shown that several of the assignments recently proposed [J. Mol. Struct. (Theochem.) 434 (1998) 1] for methyl azide are not correct. Structural parameters for CH3N3 and GeH3N3 have been obtained by combining the previously reported microwave rotational constants with the ab initio MP2/6-311+G(d,p) predicted values. These "adjusted r0" parameters have very small uncertainties of +/-0.003 A for the XH distances and a maximum of +/-0.005 A for the heavy atom distances and +/-0.5 degrees for the angles. The predicted distance for the terminal NN bond which is nearly a triple bond is much better predicted by the B3LYP calculations, whereas the fundamental frequencies are better predicted by the scaled ab initio calculations. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

12.
N,N-Dimethylaminoxygermane, H3GeONMe2, was prepared by the reaction of H3GeBr with LiONMe2 in dimethyl ether at -96 degrees C. The identity of H3GeONMe2 was proven by gas-phase IR and solution NMR spectroscopy (1H, 13C, 15N, 17O). It is an unstable volatile liquid compound. It decomposes by cleavage of a Ge-O and a Ge-H bond giving HONMe2 and an insoluble germanium hydride polymer (GeH2)n. This decomposition reaction has been modeled at the MP2/6-311G(d,p) level of theory by the homodesmotic reaction H3GeONMe2 + Ge2H6-->Ge3H8 + HONMe2, which is predicted slightly exothermic by 14 kJ mol-1. The molecular structure of H3GeONMe2 was determined by gas-phase electron diffraction supported by an ab initio geometry [MP2/6-311G(d,p)] and a force field [MP2/6-31G(d)]. The structure of the compound in the crystal lattice was determined by low-temperature crystallography using a single crystal of H3GeONMe2 grown in situ [C2H9NOGe, orthorhombic, Pnma, Z = 4, a = 8.1280(12) A, b = 9.7037(15) A, c = 7.0722(12) A]. Important bond lengths and angles (gas phase/solid state, A/deg) are Ge-O 1.785(2)/1.815(1), O-N 1.462(7)/1.460(2), N-C 1.460(4)/1.453(2), Ge-O-N 105.2(5)/104.6(1), O-N-C 105.8(5)/105.8(1), C-N-C 110.8(9)/111.2(2), Ge...N 2.587(6)/2.601(1). In the solid state the compound forms infinite chains by intermolecular Ge...O contacts of 2.808 A. The question of the attraction between Ge and N atoms is discussed with respect to reference Ge/O and N/O compounds, which have wider angles at oxygen than H3GeONMe2. For comparison the structures of the compounds H3CONMe2, H3SiONMe2, and H3SnONMe2 were also calculated to reflect the influence of the group 14 atom on the structure and to discuss the occurrence of weak E...N interactions in the compounds H3EONMe2.  相似文献   

13.
The microwave spectra of cyclopropanethiol, C(3)H(5)SH, and one deuterated species C(3)H(5)SD, have been investigated in the 20 - 80 GHz frequency range. The spectra of the ground vibrational state and of three vibrationally excited states of the parent species of a conformer which has a synclinal ("gauche") arrangement for the H-C-S-H chain of atoms, was assigned. The H-C-S-H dihedral angle is 76(5)° from synperiplanar (0°). The b-type transitions of the ground and of the vibrationally excited states of the parent species were split into two components, which is assumed to arise from tunneling of the proton of the thiol group between two equivalent synclinal potential wells. No splitting was resolved in the spectrum of C(3)H(5)SD. The tunneling frequency of the ground vibrational state of C(3)H(5)SH is 1.664(22) MHz. The tunneling frequency of the first excited-state of the C-S torsion is 52.330(44) MHz, whereas this frequency is 26.43(13) and 3.286(61) MHz, respectively, for the first excited states of the two lowest bending vibrations. The dipole moment of the ground vibrational state of the parent species is μ(a) = 4.09(5), μ(b) = 2.83(11), μ(c) = 0.89(32), and μ(tot) = 5.06(16) × 10(-30) C m. The microwave study has been augmented by high-level density functional and ab initio quantum chemical calculations.  相似文献   

14.
In two stable structures have a trigonal bipyramidal arrangement around Ge, with the extra electron in equatorial (tbp eq) or axial (tbp ax) position. In only tbp ax is found, while a second structure with a tetrahedral germyl group has the extra electron on the conjugated π system. C−Ge bond cleavage yields allyl/ pentadienyl radicals plus germide. Both dissociation reactions require 4–6 kcal mol−1, less than the analogous C and Si systems (ca. 30 and 14 kcal mol−1, respectively). Fragmentation is dramatically activated with respect to homolysis in the corresponding neutrals. The wavefunction is dominated by one single configuration at all distances, in contrast to homolytic cleavage, in which two configurations are important. C−Ge bond dissociation is at variance also with heterolysis, due to spin recoupling of one of the C−Ge bond electrons with the originally unpaired electron. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

15.
Hydrometallation of iPr2N?Ge(CMe3)(C?C?CMe3)2 with H?M(CMe3)2 (M=Al, Ga) affords alkenyl–alkynylgermanes in which the Lewis‐acidic metal atoms are not coordinated by the amino N atoms but by the α‐C atoms of the ethynyl groups. These interactions result in a lengthening of the Ge?C bonds by approximately 10 pm and a comparably strong deviation of the Ge?C?C angle from linearity (154.3(1)°). This unusual behaviour may be caused by steric shielding of the N atoms. Coordination of the metal atoms by the amino groups is observed upon hydrometallation of Et2N?Ge(C6H5)(C?C?CMe3)2, bearing a smaller NR2 group. Strong M?N interactions lead to a lengthening of the Ge?N bonds by 10 to 15 pm and a strong deviation of the M atoms from the MC3 plane by 52 and 47 pm, for Al and Ga, respectively. Dual hydrometallation is achieved only with HAl(CMe3)2. In the product, there is a strong Al?N bond with converging Al?N and Ge?N distances (208 vs. 200 pm) and an interaction of the second Al atom to the phenyl group. Addition of chloride anions terminates the latter interaction while the activated Ge?N bond undergoes an unprecedented elimination of EtN?C(H)Me at room temperature, leading to a germane with a Ge?H bond. State‐of‐the‐art DFT calculations reveal that the unique mechanism comprises the transfer of the amino group from Ge to Al to yield an intermediate germyl cation as a strong Lewis acid, which induces β‐hydride elimination, with chloride binding being crucial for providing the thermodynamic driving force.  相似文献   

16.
1,2-Propadienylphosphine (allenylphosphine), H(2)C=C=CHPH(2), has been investigated by Stark and Fourier transform microwave spectroscopy. Two rotameric forms denoted syn and gauche have been assigned. The syn form has a symmetry plane (C(s)() symmetry) where the lone electron pair of phosphorus points toward the double bonds. The phosphino group is rotated roughly 120 degrees from this position in the gauche rotamer. The dipole moment of syn was determined to be mu(a) = 1.613(23), mu(b) = 2.347(24), mu(c) = 0 (for symmetry reasons), and mu(tot) = 2.848(28) x 10(-30) C m [0.854(8) D]. The energy difference between the two forms was found to be 2.1(4) kJ/mol from relative intensity measurements with syn as the more stable conformer. Extensive quantum chemical calculations have been carried out and accurate equilibrium structures have been determined for these two rotamers, as well as for the corresponding two conformers of vinylphosphine (H(2)C=CHPH(2)).  相似文献   

17.
Cyanoacetaldehyde (NC? CH2CH?O) and its isomer, cyanovinylalcohol (NC? CH?CH? OH), as possible components of the interstellar medium, comets, or planetary atmospheres, exist in equilibrium in the gas phase, although the latter compound is very much in the minority (2 %). The recording and analysis of the gas‐phase infrared spectrum of the former compound within the 4000–500 cm?1 spectroscopic range and the potential presence of the latter isomer, which could be vital for their detection in these media, are reported. CCSD(T) and G4 high‐level ab initio methods, as well as density functional theory calculations, predict the existence of two stable rotamers of cyanoacetaldehyde. The global minimum has a structure with an unusual O‐C‐C‐C dihedral angle (150°) that falls between the antiperiplanar (180°) and anticlinal forms (120°). The second rotamer, which is about 4.0 kJ mol?1 less stable in terms of free energy, has a planar structure that corresponds to the synperiplanar form (O‐C‐C‐C dihedral angle: 0°). The absorption vibrational bands of the two aldehyde rotamers that are present in the mixture lead to a spectrum with a very complex structure in the region of deformation movements, in which several low‐intensity bands overlap. A complete and unambiguous assignment of the experimental spectrum has been achieved by using the calculated harmonic and anharmonic vibrational frequencies.  相似文献   

18.
The microwave spectrum of 2-fluoroethylisocyanide, FCH(2)CH(2)N≡C, has been investigated in the whole 50-120 GHz spectral region. Selected portions of the spectrum in the range of 18-50 GHz have also been recorded. The microwave spectra of the ground state and vibrationally excited states of two conformers have been assigned. Accurate spectroscopic constants have been derived from a large number of microwave transitions. The F-C-C-N chain of atoms is antiperiplanar in one of these rotamers and synclinal in the second conformer. The energy difference between the two forms was obtained from relative intensity measurements. It was found that the synclinal conformer is favored over the antiperiplanar form by 0.7(5) kJ/mol. Quantum chemical calculations at the high CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory were performed. Most, but not all, of the spectroscopic constants predicted in these calculations are in good agreement with the experimental counterparts. The theoretical calculations correctly indicate that the F-C-C-N dihedral angle in the synclinal form is about 67° but underestimate the magnitude of the gauche effect and erroneously predict the antiperiplanar rotamer to be 1.3-1.6 kJ/mol more stable than the synclinal conformer.  相似文献   

19.
The ion-molecule reactions occurring in GeH(4)/NF(3), GeH(4)/SF(6), and GeH(4)/SiF(4) gaseous mixtures have been investigated by ion trap mass spectrometry and ab initio calculations. While the NF(x)(+) (x=1-3) react with GeH(4) mainly by the exothermic charge transfer, the open-shell Ge(+) and GeH(2)(+) undergo the efficient F-atom abstraction from NF(3) and form GeF(+) and F-GeH(2)(+) as the only ionic products. The mechanisms of these two processes are quite similar and involve the formation of the fluorine-coordinated complexes Ge-F-NF(2)(+) and H(2)Ge-F-NF(2)(+), their subsequent crossing to the significantly more stable isomers FGe-NF(2)(+) and F-GeH(2)-NF(2)(+), and the eventual dissociation of these ions into GeF(+) (or F-GeH(2)(+)) and NF(2). The closed-shell GeH(+) and GeH(3)(+) are instead much less reactive towards NF(3), and the only observed process is the less efficient formation of GeF(+) from GeH(+). The theoretical investigation of this unusual H/F exchange reaction suggests the involvement of vibrationally-hot GeH(+). Passing from NF(3) to SF(6) and SiF(4), the average strength of the M-F bond increases from 70 to 79 and 142 kcal mol(-1), and in fact the only process observed by reacting GeH(n)(+) (n=0-3) with SF(6) and SiF(4) is the little efficient F-atom abstraction from SF(6) by Ge(+). Irrespective of the experimental conditions, we did not observe any ionic product of Ge-N, Ge-S, or Ge-Si connectivity. This is in line with the previously observed exclusive formation of GeF(+) from the reaction between Ge(+) and C-F compounds such as CH(3)F. Additionally observed processes include in particular the conceivable formation of the elusive thiohypofluorous acid FSH from the reaction between SF(+) and GeH(4).  相似文献   

20.
The structures and vibrational frequencies of cations of fluorinated and chlorinated germanes and radicals (GeHxXy+, X = F, Cl; x + y = 1-4) and protonated germanes are investigated theoretically at B3LYP/6-31+G(2df,p) level. For GeH2, GeHX, GeH2X, GeHX2, and germanes, the most stable cationic structures are largely distorted from their neutral ones and all can be viewed as ion complexes between a Ge-centered cation and a neutral atom or diatom. The ionization potentials, appearance energies, and proton affinities are obtained at Gaussian-3(CC) levels. Cations with the lowest energy (and adiabatic ionization potentials (in eV)) are Ge+-H2 (2B2, 8.94), Ge+-FH (9.42), Ge+-ClH (9.45), GeH3(+) (8.01), GeF+-H2 (7.71), GeCl+-H2 (8.01), GeF+-FH (7.69), GeCl+-ClH (7.80), GeH2(+)-H2 (10.45), GeH2(+)-FH (10.32), GeHF+-FH (10.64), GeF2(+)-FH (11.40), GeF4(+) (15.22), GeH2(+)-ClH (10.29), GeHCl+-ClH (10.33), GeCl2(+)-ClH (10.43), and GeCl4(+) (11.48). The most stable protonated germanes (and proton affinities (in kJ/mol, 0 K)) are GeH3(+)-H2 (658.3), GeH3(+)-FH (672.5), GeH2F+-FH (634.2), GeHF2(+)-FH (583.4), GeF3(+)-FH (516.3), GeH3(+)-ClH (672.7), GeH2Cl+-ClH (652.6), GeHCl2(+)-ClH (637.5), and GeCl3(+)-ClH (624.4), respectively. The G3 atomization energies of fluorinated Ge-species are found to be significantly different from G3X and G4 ones, and this may merit further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号