首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D. Igra  J. Falcovitz 《Shock Waves》2010,20(5):441-444
This paper describes a numerical simulation of bow shock formation ahead of a sphere at steady supersonic flow in the Mach number range of 1.025–1.20. Turbulent viscous flow results are presented using the Spalart–Allmaras turbulence model. The purpose of this study is to determine the shock standoff distance for a spherical projectile at slightly supersonic free flight speeds. Results are compared to experimental data, including double exposure holographic interferograms obtained from a 40 mm polycarbonate sphere launched by a light gas gun. The shock standoff distance was determined from the interferograms. The present numerical simulations were found to agree with previously published data, and reached down to M = 1.025—a range where almost no previously published data exists. The computed flow structure and shock wave locations agree well with recently obtained free-flight interferograms.  相似文献   

2.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

3.
The laminar near wake behind a sharp wedge with the semi-vertex angle of 10° and a flat base section placed at zero incidence in a Mach 6 uniform perfect-gas flow with the specific heat ratio 1.4 at Reynolds numbers ranging from 3 × 102 to 105 is considered. The study is carried out on the basis of the numerical solution of the Navier-Stokes equations. The results on the base pressure and the pressure and local stagnation temperature distributions along the plane of symmetry and in several cross-sections in the near wake are compared in detail with the data [1].  相似文献   

4.
A modification of the Roe scheme called L2Roe for low dissipation low Mach Roe is presented. It reduces the dissipation of kinetic energy at the highest resolved wave numbers in a low Mach number test case of decaying isotropic turbulence. This is achieved by scaling the jumps in all discrete velocity components within the numerical flux function. An asymptotic analysis is used to show the correct pressure scaling at low Mach numbers and to identify the reduced numerical dissipation in that regime. Furthermore, the analysis allows a comparison with two other schemes that employ different scaling of discrete velocity jumps, namely, LMRoe and a method of Thornber et al. To this end, we present for the first time an asymptotic analysis of the last method. Numerical tests on cases ranging from low Mach number (M=0.001) to hypersonic (M=5) viscous flows are used to illustrate the differences between the methods and to show the correct behavior of L2Roe. No conflict is observed between the reduced numerical dissipation and the accuracy or stability of the scheme in any of the investigated test cases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Supersonic flight of aerospace planes is of marked interest since several flow regimes characterized by different local flow structures have to be flown through. This problem was investigated experimentally for the hypersonic research configuration ELAC 1. The aim of the study was to detect the influence of the rounded leading edge, of the thickness distribution prescribed, and of the Reynolds number, especially on the flow on the leeward side of the configuration. The experiments were carried out in the transonic wind tunnel of Aerodynamisches Institut of RWTH Aachen, at a freestream Mach number Ma =2, a unit Reynolds number of Re =13×106, angles of attack between ?3°?α?10°, and in a wind tunnel of the Institute for Theoretical and Applied Mechanics of the Russian Academy of Sciences in Novosibirsk. The freestream Mach numbers covered in these experiments were varied between 2?Ma ?4, freestream Reynolds numbers per unit length between 25×106?Re ?56×106 and angles of attack between ?3°?α?10°. Flow visualization studies, measurements of surface pressure distributions and of aerodynamic forces were used to analyze the flow. The results, which will also be compared with numerical data, clearly indicate marked differences in the location of the separation and reattachment lines, and the formation of the primary, secondary and tertiary vortices, for the flow regimes investigated.  相似文献   

6.
A supersonic flow in the near wake behind a cylinder is considered. Base pressure distributions behind a circular cylinder for various Mach numbers M are obtained and analyzed by means of direct numerical simulation based on high-order approximation algorithms. For M = 2.46, the results obtained in the present study are compared with available experimental and numerical data. Generation of turbulent kinetic energy is calculated for various Mach numbers.  相似文献   

7.
为了揭示超临界CO2磨料射流流场特性,利用计算流体动力学模拟软件,对超临界CO2磨料射流结构及不同因素对射流流场的影响规律进行了研究。结果表明:超临界CO2磨料射流轴向速度和冲击力随着喷距的增大,先增大后减小,即存在最优喷距,喷射压差为10~30 MPa时最优喷距为3~6倍喷嘴直径;喷射压差一定时,围压由10 MPa增至30 MPa对射流速度场及液相冲击力会造成较小的负面影响。通过超临界CO2射流破岩实验对上述2因素进行了辅助对比验证;流体温度由333 K增至413 K,固液两相轴向速度增大,而流体密度降低,导致液相冲击力减弱;磨料浓度由3.0%连续增至11.0%,射流固液两相轴向速度逐渐降低,降幅逐渐减小。  相似文献   

8.
The transition from regular reflection (RR) to Mach reflection (MR) as a plane shock wave diffracts around a triangular mountain of 45° inclination is analysed in this paper, both by optical measurement in a shock tube and by numerical simulation the numerical method developed by Li Yingfan[1] is of the FLIC type with triangular mesh. The dependence of the critical transition point Lk ofRR→MR on shock Mach numberM i is analyzed and the variations of the incidence angle ω i of the impinging shock and the reflection angle ω r with the distanceL * are investigated. Our experimental and numerical results agree well with the theoretical results of Iton and Italya.  相似文献   

9.
The present study aims to extend the Dual Reciprocity Boundary Element Method in order to solve acoustic wave propagation equations in the frequency domain for a parallel shear flow. The Linearized Euler Equations are written as a coupled pair of equations, which are second-order in terms of acoustic pressure and first-order in terms of normal acoustic velocity. Good agreement between numerical results and analytical solutions for a low Mach number shear flow (M<0.1) shows the interest of the method.  相似文献   

10.
A finite difference technique that incorporates a numerical mapping has been successfully applied to analyse both planar and axisymmetric Newtonian jets. A pressure gradient equation and a free-surface slope equation have been derived for free-surface iteration. The computation of pressure inside the jet surface using the pressure gradient equation is stable and accurate at high Reynolds numbers. The free-surface slope equation is needed for updating the free surface and is applicable for jets with strong surface tension effects. The present development can simulate the Newtonian jets for Reynolds numbers as high as 2000 and capillary number as low as 10?5. Numerical predictions by the present technique are close to the results of previous finite element simulations.  相似文献   

11.
The effect of incident shock wave strength on the decay of interface introduced perturbations in the refracted shock wave was studied by performing 20 different simulations with varying incident shock wave Mach numbers (M ~ 1.1? 3.5). The analysis showed that the amplitude decay can be represented as a power law model shown in Eq.7, where A is the average amplitude of perturbations (cm), B is the base constant (cm?(E?1), S is the distance travelled by the refracted shockwave (cm), and E is the power constant. The proposed model fits the data well for low incident Mach numbers, while at higher mach numbers the presence of large and irregular late time oscillations of the perturbation amplitude makes it hard for the power law to fit as effectively. When the coefficients from the power law decay model are plotted versus Mach number, a distinct transition region can be seen. This region is likely to result from the transition of the post-shock heavy gas velocity from subsonic to supersonic range in the lab frame. This region separates the data into a high and low Mach number region. Correlations for the power law coefficients to the incident shock Mach number are reported for the high and low Mach number regions. It is shown that perturbations in the refracted shock wave persist even at late times for high incident Mach numbers.  相似文献   

12.
The aerodynamic characteristics of cone-sphere models are studied at Mach numbers M = 6, 8.4, and 12 to 13 over a wide Reynolds number range. Models of a braking device (sphere) were connected with a load (frustum of a cone) by means of shrouds. The dependences of the aerodynamic coefficients C x and C y on the angle of attack α were obtained for different relative dimensions of the load and the braking device, shroud lengths, and Mach and Reynolds numbers. The effect of the above-mentioned parameters on the aerodynamic characteristics of the models is analyzed. The C x (ReD) dependences of load-parachutemodels in a symmetric flow are determined over the wide Mach and Reynolds number ranges 6 ≤ M ≤ 13 and 3 · 103 ≤ ReD ≤ 3 · 106.  相似文献   

13.
A direct numerical simulation is presented for the unsteady flow over a two-dimensional cavity at a Mach number of 0.5. The incoming flow is a laminar, subsonic boundary layer. Two values of the principal parameter L/δθ , where L is the cavity length and δθ the momentum thickness of the boundary layer, have been studied. The feedback mechanisms which induce self-sustained oscillations in the cavity have been well captured and two flow regimes were pointed out. The corresponding acoustic responses are specified in terms of the wall pressure in the cavity and the radiated acoustic field.  相似文献   

14.
爆轰波波形与药型罩结构匹配对杆式射流成形的影响   总被引:1,自引:0,他引:1  
为提高杆式射流对钢靶的侵彻能力,设计了一种偏心亚半球药型罩,通过爆轰波碰撞理论推导出药型罩压垮速度,并结合改进的PER理论建立了杆式射流成形的模型。分析了药型罩结构参数对爆轰波碰撞压力的影响规律,获得了等质量变壁厚药型罩射流质量及速度分布的变化规律。结果表明:马赫反射压力随偏心距的增大而增大,随外壁曲率半径的增大而减小,而正规斜反射压力与马赫反射压力变化规律相反,且马赫反射压力受药型罩结构影响较大;通过对比不同方案,罩顶与罩口部厚、中间薄形状药型罩形成的射流质量提高了29.5%,头部速度提高了21.3%,且速度梯度最大,相同炸高条件下侵彻深度提高了约2倍装药直径。针对优化结构进行了数值模拟和实验验证,通过对爆轰波波形与药型罩结构合理的匹配设计,使形成的杆式射流成形及侵彻性能得到显著提升。  相似文献   

15.
Results of a numerical study of three-dimensional supersonic jets propagating in a cocurrent flow are described. Averaged parabolized Navier-Stokes equations are solved numerically on the basis of a developed scheme, which allows calculations in supersonic and subsonic flow regions to be performed in a single manner. A jet flow with a cocurrent flow Mach number 0.05 ⩽ M ⩽ 7.00 is studied, and its effect on the structure of the mixing layer is demonstrated. The calculated results are compared with available experimental and numerical data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 54–63, May–June, 2008.  相似文献   

16.
The flow structure and heat exchange in the zone of interference between an inclined shock and the surface of a flat plate are investigated experimentally and theoretically as functions of many parameters, the interference being studied in both the presence and the absence of bluntness of the leading edge. The experiments were carried out at Mach numbers M = 6, 8, and 10 and the Reynolds numbers Re L , calculated using the plate length L = 120 mm and the free-stream parameters, varied over the range from 0.24 ? 106 to 1.31 ? 106. The bluntness radius of the leading edge of the plate, the intensity of the impinging shock, and its location with respect to the leading edge were varied. The numerical simulation was carried out by solving the complete two-dimensional Navier-Stokes equations and averaged Reynolds equations using the q-ω turbulence model. The laminar boundary layer became turbulent inside the separation zone induced by the shock. It is shown that the plate bluntness significantly reduces the heat exchange intensity in the interference zone, this effect intensifying with increase in the Mach number.  相似文献   

17.
Results of a numerical and experimental study of characteristics of disturbances in a hypersonic shock layer on a flat plate covered by a sound-absorbing coating and aligned at an angle of attack are presented. Experiments and computations are performed for the free-stream Mach number M = 21 and Reynolds number Re L = 6 · 104. A possibility of suppressing pressure fluctuations in the shock layer at frequencies of 20–40 kHz with the use of tubular and porous materials incorporated into the plate surface is demonstrated. Results of numerical simulations are found to be in good agreement with experimental data.  相似文献   

18.
This paper studies a low order mixed finite element method (FEM) for nonstationary incompressible Navier-Stokes equations. The velocity and pressure are approximated by the nonconforming constrained Q 1 rot element and the piecewise constant, respectively. The superconvergent error estimates of the velocity in the broken H 1-norm and the pressure in the L 2-norm are obtained respectively when the exact solutions are reasonably smooth. A numerical experiment is carried out to confirm the theoretical results.  相似文献   

19.
A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L 2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.  相似文献   

20.
We investigate the behavior of flow variables, thermodynamic variables and their interaction in rapidly sheared (S) homogeneous compressible turbulence using rapid distortion theory (RDT). We subject an initially isotropic and incompressible flow field to homogeneous shear-rate of various strengths quantified by a gradient Mach number (M g ) based on characteristic wavenumber. Our objective is to characterize the behavior of flow/thermodynamic fluctuations and their linear interactions during the course of turbulence evolution. Even though the mean shear-rate is held constant, the gradient Mach number progressively diminishes with time as the relevant wavenumber increases due to the mean deformation. The evolution exhibits three distinct phases which we categorize based on the character of pressure as: (i) Pressure-released (PR) stage which is observed when ${St < \sqrt{M_{g0}}}$ and pressure effects are negligible; (ii) Wave-character (WC) stage wherein ${\sqrt{M_{g0}} < St < M_{g0}}$ and the wave character of pressure is in evidence; and (iii) Low-Mach number (LM) stage when St > M g0, where M g0 is the initial gradient Mach number. In the PR regime we find that the thermodynamic fluctuations evolve from their initial state but velocity fluctuations grow unhindered by pressure fluctuations. In the WC regime, the pressure fluctuations become significant and flow-thermodynamic interaction commences. This interaction brings about equipartition of dilatational kinetic energy and thermodynamic potential energy. The interaction also results in stabilization of turbulence, and the total kinetic energy growth comes to a near standstill. Ultimately in the LM stage, kinetic energy starts increasing again with the growth rate being very similar to that in incompressible RDT. However, the thermodynamic fluctuations continue to grow despite the gradient Mach number being substantially smaller than unity. Overall, the study yields valuable insight into the linear processes in high Mach number shear flows and identifies important closure modeling issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号