首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase transition on the surface of an aluminium target and vapour plasma induced by laser irradiation in the nanosecond regime at the wavelengths of 1.06 and 0.248 μm with an intensity of 108-109 W/cm2 in vacuum are analysed. Particular attention is paid to the wavelength dependence of the observed phenomena and the non-one-dimensional effect caused by the Gaussian laser intensity distribution. A transient two-dimensional model is used which includes conductive heat transfer in the condensed phase, radiative gas dynamics and laser radiation transfer in the plasma as well as surface evaporation and back condensation at the phase interface. It is shown that distinctions in phase transition dynamics for the 1.06 and 0.248 μm radiation result from essentially different characteristics of the laser-induced plasmas. For the 1.06 μm radiation, evaporation stops after the formation of hot optically thick plasma, can occasionally resume at a later stage of the pulse, proceeds non-uniformly in the spot area, and the major contribution to the mass removal occurs in the outer part of the irradiated region. Plasma induced by the 0.248 μm laser is much more transparent therefore evaporation does not stop but continues in the subsonic regime with the Mach number of about 0.1.  相似文献   

2.
3.
Bulk evaporation process in absorbing condensed matter irradiated with laser pulses was studied using the one-dimensional thermal model with additional interfaces between different phases. Within this approach, it was shown that the repeated explosive boiling mode can be achieved using nanosecond laser pulses, if the nucleation time is shorter than 0.1 ns. This mode can be observed if the surface pressure is lower than the critical pressure P c of the liquid-vapor phase transition. The dependences of these processes on the laser pulse intensity and duration, as well as on evaporation kinetics were studied. Explosive boiling and spallation of a transparent liquid film on a pulse-heated absorbing target, as well as the photoacoustic signal in the target before the explosion, were considered.  相似文献   

4.
A numerical model is constructed to predict transient opposed-flow flame spread behaviour in a channel flow over a melting polymer. The transient flame is established by initially applying a high external radiation heat flux to the surface. This is followed by ignition, transition and finally steady opposed-flow flame spread. The physical phenomena under consideration include the following: gas phase: channel flow, thermal expansion and injection flow from the pyrolyzed fuel; condensed phase: heat conduction, melting, and discontinuous thermal properties (heat capacity and thermal conductivity) across the phase boundary; gas-condensed phase interface: radiation loss. There is no in-depth gas radiation absorption in the gas phase. It is necessary to solve the momentum, species, energy and continuity equations in the gas along with the energy equation(s) in the liquid and solid. Agreement is obtained between the numerical spread rate and a flame spread formula. The influence of the gas flow is explored by comparing the Navier-Stokes (NS) and Oseen (OS) models. An energy balance analysis describes the flame-spread mechanism in terms of participating heat transfer mechanisms.  相似文献   

5.
We discuss the role of magnetic degrees of freedom in Yang-Mills plasma at temperatures above and of order of the critical temperature T c . While at zero temperature the magnetic degrees of freedom are condensed and electric degrees of freedom are confined, at the point of the phase transition both magnetic and electric degrees of freedom are released into the thermal vacuum. This phenomenon might explain the observed unusual properties of the plasma.  相似文献   

6.
The dynamics of a threshold network (TN) with thermal noise on scale-free, random-graph, and small-world topologies are considered herein. The present analytical study clarifies that there is no phase transition independent of network structure if temperature T = 0, threshold h = 0 and the probability distribution degree P(k) satisfies P(0) = D = 0. The emergence of phase transition involving three parameters, T, h and D is also investigated. We find that a TN with moderate thermal noise extends the regime of ordered dynamics, compared to a TN in the T = 0 regime or a Random Boolean Network (RBN). A TN can be continuously reduced to an expression of RBN in the infinite T limit.Received: 25 February 2004, Published online: 12 August 2004PACS: 89.75.Fb Structures and organization in complex systems - 89.20.Hh World Wide Web, Internet - 05.70.Fh Phase transitions: general studies  相似文献   

7.
用高速纹影诊断技术研究激光辐照下金属表面发生汽化的特征及蒸气发展运动过程,结合汽化模型给出了凝聚相表面温度与激光入射功率密度的关系。由实验得到了不同入射激光功率密度下汽化表面(凝聚相)温度,蒸气羽阵面速度,前驱空气冲击波速度。  相似文献   

8.
The dynamics of the melting of a surface nanolayer and the formation of thermal and shock waves in metals irradiated by femtosecond laser pulses has been investigated both experimentally and theoretically. A new experimental-computational method has been implemented to determine the parameters of laser-induced shock waves in metallic films. Data on the strength properties of the condensed phase in aluminum films at an extremely high strain rate ($ \dot V $ \dot V /V ∼ 109 s−1)under the action of a laser-induced shock wave have been obtained.  相似文献   

9.
Laser‐matter interaction is defined by an electronic band structure of condensed matter and frequency ωL of electromagnetic radiation. In the range of moderate fluences, the energy absorbed by electrons from radiation finally thermalizes in the ion thermal energy. The thermalization processes are different for optical as compared with X‐ray quanta and for metals relative to semiconductors and dielectrics, since the light absorption and electron‐electron, electron‐ion dynamics are sensitive to the electron population in a conduction band and the width of a forbidden gap. Although the thermalization processes are different, the final state is simply a heated matter. Laser heating creates powerful stresses in a target if duration of a laser pulse τL is short in acoustic time scale. Nucleation and material removal take place under such stresses. Such way of removal is called here the spallative ablation. Thus the spallative ablation is an ablation mechanism universally important for qualitatively different materials and quanta (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The phase transition dynamics of amorphous Ag8In14Sb55Te23 (AIST) thin films induced by single nanosecond laser pulses were studied by transient optical reflectivity and electrical resistance measurements with nanosecond resolution. Phase transition driven by nanosecond laser pulses can be achieved in a proper fluence range on AIST thin films. The results show that phase transition dynamics driven by nanosecond laser pulses was a multi-stage optical evolution process involving melt, solidification, recalescence, and recrystallion. However, it was found that the real-time responses of optical and electrical signals were quite different under the same irradiated condition. The recalescence process reflected by the second rising of optical reflectivity will not result in obvious changes in electrical resistance. The dependence of saturated time determined by optical and electrical evolution curve on laser pulse fluence was compared and analyzed. A two-dimensional percolation model was employed to explain the difference between electrical and optical transient responses.  相似文献   

11.
It is well known that laser scattered-light applicators when applied for laser-induced tumor therapy allow the precise thermal destruction of metastases. Using laser radiation in the NIR spectral range (usually, Nd:YAG laser systems λ = 1064 nm), a penetration depth of 5–10 cm (1/e is the decrease in radiation intensity) is achieved in biological tissues. The major tissue-optical parameters, i.e., absorption coefficient μa, scattering coefficient μs, and the anisotropy factor g, show biological tissues to be strongly scattering media which have a so-called optical window in the NIR. As a consequence, the therapeutic laser radiation is scattered and absorbed at a deeper level, leading to a virtual enlargement of the laser applicator. The thermal sclerotization and the thermal cell damage originate within the absorbing volume of the laser radiation and spread outward by thermal diffusion. There are three dosimetrically relevant zones of thermal and biological damage: (1) a zone of thermal coagulation; (2) a threshold of partial necrosis (destruction of all metabolic processes in the cell is the maintenance of essential parts of the cytoskeleton and the plasma membrane); this is characterized by a specific temperature range, the so-called phase transition, which refers to the transition from the gel phase of the biomembrane to the fluid phase; the determination of this temperature zone is an integral part of the following experimental investigations on MX1 cells; (3) an external zone of thermal effects made up of partial and multiple damage with a statistical chance of survival. This paper describes the investigations on heat stress in cancer cells to verify the maximum phase transition of the outer MX1 cell membranes and the related results. For this purpose, a novel method of quantum dot fluorescence dosimetry was developed. The evaluation of the measured laser-induced fluorescences yields a first approximation of the determination of the phase transition on MX1 cells.  相似文献   

12.
In most laser material processing, material removal by different mechanisms is involved. Here, application of acoustic signals with thermoelastic (below threshold) and breakdown origin (above threshold) together with plasma plume analysis as a simple monitoring system of interaction process is suggested. In this research the interaction of pulse CO2 laser with 200 ns duration and maximum energy of 1.3 J operating at 1 Hz with austenitic stainless steel (316-L) is reported. The results showed that the non-linear point of the curve can serve as a useful indicator of melting fluence threshold (in this case ≈830 J cm−2) with corresponding temperature calculated using plasma plume analysis. Higher acoustic amplitudes and larger plasma plume volume indicates more intense interaction. Also, analysis showed that a phase explosion process with material removal (ejecta) in the form of non-adiabatic (i.e., dt ? α−1) is at play after laser pulse is ended. Also, SEM photographs show different surface quality medication at different laser intensities, which indicates the importance of recoil momentum pressure and possibly electrons and ions densities in heat transfer. Finally, electrochemical test indicate an improved corrosion resistance for laser treated samples compared to untreated ones.  相似文献   

13.
The non-linear Voigt effect has been studied in He discharge under resonance laser interaction with the He transition. The range of non-linear signal existence was determined. The contribution of the lower and upper states to the overall signal was analyzed. The cross-section for depolarizing collisions with ground state He atoms was estimated for the 33 D 2,3 He state. Received: 16 June 1998 / Received in final form: 14 December 1998  相似文献   

14.
It is well established that, at sub-relativistic intensities, the absorption of laser light by underdense plasmas decreases with increasing pulse intensity as interaction enters a non-linear regime. On the other hand, as the relativistic interaction regime is reached, further absorption mechanisms can be activated which can account for a substantial energy transfer. Using the particle code WAKE, we performed numerical simulations of the relativistic interaction of intense laser pulses with underdense plasmas in conditions that can be experimentally tested. Our simulations show that, while the relativistic laser intensity generates a population of fast electrons, a considerable fraction of the pulse energy goes into a population of thermal electrons. These findings open new possibilities for a direct observation of relativistic interaction processes using high resolution soft X-ray techniques.  相似文献   

15.
A time-dependent electric field gives rise to a stationary non-equilibrium current I (2) around a mesoscopic metal ring threaded by a magnetic flux. We show that this current, which is proportional to the intensity of the field, is closely related to the exchange part of the interaction contribution to the equilibrium persistent current, and that the corresponding non-linear conductivity directly measures the weak localization correction to the polarization. We explicitly calculate the disorder average of I (2) in the diffusive regime as function of the frequency of the electric field and the static flux piercing the ring, and suggest an experiment to test our theory. Received: 5 September 1997 / Accepted: 4 November 1997  相似文献   

16.
Investigations are performed on thermal, optical and electrical response of UV laser-irradiated platinum (Pt). 4N pure, annealed and fine polished samples are exposed to the KrF Excimer laser (248 nm, 20 ns, 50 mJ) under vacuum ~10?6 torr at different laser fluences (0.5–2.5 J/cm2). Space-resolved plasma plume dynamics is studied by analyzing the captured plume images with the help of a computer controlled image-grabbing system. The irradiated targets are characterized for surface morphology, structural, optical and electrical investigations using the diagnostics; scanning electron microscopy, X-ray diffraction, rotating compensator auto-aligned ellipsometer and four-point probe, respectively. The value of maximum intensity emitted by Pt plasma plume is 250 grey scales. Surfaces of the target metals are modified by craters, moltens and redeposited material. Laser-induced periodic surface structures are produced at low laser fluence. Irradiation of Pt causes changes in diffracted X-rays intensity and grain sizes, dislocation in line densities and strain in the target materials. Considerable changes occur in optical parameters as well. A decrease in electrical conductivity of the irradiated targets also takes place in an exponential way with the change in laser fluence.  相似文献   

17.
The problems studied in this paper involve the action of laser radiation or a particle beam on a condensed material. Such an interaction produces a hot corona, and the recoil momentum accelerates the cold matter. In the coordinate frame tied to the accelerated target, the acceleration is equivalent to the acceleration of gravity. For this reason, the density distribution ρ is hydrostatic in the zeroth approximation. In this paper the structure of such a flow is studied for a two-phase equation of state. It is shown that instead of a power-law density profile, which obtains for a constant specific-heat ratio, a complicated distribution containing a region with a sharp variation of ρ arises. Similar characteristics of the density profile arise with isochoric heating of matter by an ultrashort laser pulse and the subsequent expansion of the heated layer. The formation of a rarefaction wave and the interaction of oppositely propagating rarefaction waves in a two-phase medium are studied. It is very important to take account of the two-phase nature of the material, since conditions (p a ∼1 Mbar) are often realized under which the foil material comes after expansion into the two-phase region of the phase diagram. Zh. éksp. Teor. Fiz. 115, 2091–2105 (June 1999)  相似文献   

18.
First experimental investigations are reported on nonlinear beam shaping due to the interaction between an intense laser beam and a cloud of laser cooled rubidium atoms. Resonant excitation of the F = 3 ↔ F = 4 hyperfine transition is considered. The single-pass interaction through the cold vapor causes an increase in the laser beam intensity in the forward direction (zero transverse wavevector component) when observed in Fourier space, for sufficiently high values of saturation. A qualitative explanation of the observations based on a two-level model for a resonantly excited transition proves acceptable. The observations are compatible with an interpretation based on nonlinear index-induced focusing of an incident beam with curved wavefront, as is used in z-scan measurements. Simple physical considerations allow us to deduce the conditions for the observability of optical patterns in the beam transmitted by a cold atomic cloud.  相似文献   

19.
In this article active non-linear optical effects in semiconductors are reviewed. These processes arise because of the dynamics of excited populations of charge carriers temporarily created in otherwise empty states when a beam of laser radiation is incident on the material. A large number of different effects have been observed in different semiconductor materials recently and the non-linearities cover a wide range of magnitudes both in time-scale and size of non-linearity. The theory and physical concepts relevant to these processes are described and experimental observations using both high power pulsed and low power c.w. lasers are reviewed. Applications in optical bistability, phase conjugation, optical gating and optoelectronic gating are discussed.  相似文献   

20.
An efficient method is proposed for generating thermonuclear neutrons by irradiating with a laser pulse a volume-structured material of subcritical density, consisting of a series of thin layers of condensed matter separated by interlayers of low-density matter (or a vacuum gap). The plasma ions are heated up to thermonuclear temperatures much higher than the electron temperature by hydrothermal dissipation of the energy of the laser radiation, as a wave of thermal explosions of the layers propagates along the laser beam axis, followed by collisions of plasma counterflows with conversion of the kinetic energy into thermal energy of ions. Different variants of the targets and experimental conditions are discussed in order to demonstrate the proposed method of neutron generation. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 8, 521–526 (25 October 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号