首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
The sparkle/AM1 model, recently defined for Eu(III), Gd(III) and Tb(III), is now extended to Ho(III). A set of 15 complexes with various representative ligands was chosen by cluster analysis from the set formed by the 27 Ho(III) complexes structures of high crystallographic quality (R factor < 0.05 Å) available in the Cambridge Structural Database and which possess oxygen or nitrogen as coordinating atoms. In the validation procedure, we included the remaining 12 Ho(III) complexes. For these 27 complexes, the Sparkle/AM1 unsigned mean error for all interatomic distances between the Ho(III) ion and the ligand atoms of the first sphere of coordination is 0.05 Å. Sparkle/AM1 constitutes the only semiempirical model for the quantum chemical calculation of Ho(III) coordination compounds available, with geometry prediction accuracies comparable to present day rare earth complex ab initio/ECP calculations, while being hundreds of times faster.  相似文献   

2.
The Sparkle/AM1 model, recently defined for Eu(III), Gd(III) and Tb(III) [R.O. Freire, G.B. Rocha, A.M., Simas, Inorg. Chem. 44 (2005) 3299] is now extended to Pr(III), using the same parameterization scheme. Thus, a set of 15 complexes, with various representative ligands of high crystallographic quality (R-factor < 0.05 Å) and which possess oxygen and/or nitrogen as coordinating atoms, was used as the training set. In the validation procedure we used a set of 33 more structures, also of high crystallographic quality. For the 48 complexes, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Pr(III) ion and the ligand atoms of the first sphere of coordination, is 0.08 Å, again comparable to present day ab initio/ECP calculations, while being hundreds of times faster.  相似文献   

3.
The Sparkle/AM1 model, the only available semiempirical quantum chemical model for the calculation of complexes of lanthanide ions, recently defined for Eu(III), Gd(III) and Tb(III), is now extended to Nd(III). Accordingly, all 57 Nd(III) complexes of high crystallographic quality (R-factor < 0.05 Å), possessing oxygen or nitrogen as directly coordinating atoms, present in the Cambridge Structural Database 2003, were considered. A subset of 15 structures was chosen by cluster analysis to constitute the parameterization training set. All 57 complexes were considered back in the validation part, and the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Nd(III) ion and the ligand atoms of the first sphere of coordination, was found to be 0.07 Å, a level of accuracy useful for luminescent complex design and comparable to present day rare earth complex ab initio/ECP calculations, while being hundreds of times faster.  相似文献   

4.
The Sparkle/AM1 model is extended to ytterbium (III) complexes. Thus, a set of 15 complexes, with various representative ligands, chosen to be representative of all complexes of high crystallographic quality (R-factor <0.05 A) in the Cambridge Crystallographic Database, and which possess oxygen and/or nitrogen as coordinating atoms, was used as the training set. In the validation procedure we added 32 more high quality crystallographic structures. For the 47 complexes, the Sparkle/AM1 unsigned mean error for all interatomic distances between the Yb(III) ion and the ligand atoms of the first sphere of coordination is 0.07 A, similar to present-day ab initio/ECP geometry prediction accuracies, and potentially useful for luminescent complex design while being hundreds of times faster.  相似文献   

5.
用量热滴定法于298.15K测定了除钪、钷以外的全部十五种稀土(III)高氯酸盐与苯并-15-冠-5在乙腈溶液中的配位作用。借助计算机算出了配合物的稳定常数和配位焓, 进而算出了配位自由能和配位熵。结果表明:十五种稀土(III)离子与苯并-15-冠-5都可以配位, 配位焓为正值;La^3^+配合物最稳定, Ce^3^+次之, 其余稀土(III)离子配合物稳定性变小, 但彼此差别不大, 在Tb处有突变;熵在配合物形成时起稳定化作用。  相似文献   

6.
The recently defined Sparkle/AM1 model is now extended to Er(III) and Ce(III), using the same parameterization scheme. Thus, a set of fifteen complexes for each lanthanide ion, with various representative ligands of high crystallographic quality (R factor < 0.05 Å), and which possess oxygen and/or nitrogen as coordinating atoms, was used as the training set. In the validation procedure we used a set of twenty-two more complex structures for the Ce(III) ion and twenty-four more for the Er(III) ion, all of high crystallographic quality. For the thirty-seven cerium(III) complexes and thirty-nine erbium(III) complexes considered, the Sparkle/AM1 unsigned mean error, for all interatomic distances between the Ln(III) ion and the ligand atoms of the first sphere of coordination, is 0.08 and 0.06 Å, a level of accuracy comparable to present day ab initio/ECP geometries, while being hundreds of times faster. The Sparkle/AM1 model may thus prove useful for luminescent complex design.  相似文献   

7.
8.
Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has been reparameterized for Eu(III) as well as newly parameterized for Gd(III) and Tb(III). The parameterizations have been carried out in a much more extensive manner, aimed at producing a new, more accurate model called Sparkle/AM1, mainly for the vast majority of all Eu(III), Gd(III), and Tb(III) complexes, which possess oxygen or nitrogen as coordinating atoms. All such complexes, which comprise 80% of all geometries present in the Cambridge Structural Database for each of the three ions, were classified into seven groups. These were regarded as a "basis" of chemical ambiance around a lanthanide, which could span the various types of ligand environments the lanthanide ion could be subjected to in any arbitrary complex where the lanthanide ion is coordinated to nitrogen or oxygen atoms. From these seven groups, 15 complexes were selected, which were defined as the parameterization set and then were used with a numerical multidimensional nonlinear optimization to find the best parameter set for reproducing chemical properties. The new parameterizations yielded an unsigned mean error for all interatomic distances between the Eu(III) ion and the ligand atoms of the first sphere of coordination (for the 96 complexes considered in the present paper) of 0.09 A, an improvement over the value of 0.28 A for the previous model and the value of 0.68 A for the first model (Chem. Phys. Lett. 1994, 227, 349). Similar accuracies have been achieved for Gd(III) (0.07 A, 70 complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements have been obtained as well; nitrates now coordinate correctly as bidentate ligands. The results, therefore, indicate that Eu(III), Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry prediction accuracies for lanthanide complexes with oxygen or nitrogen atoms in the coordination polyhedron that are competitive with present day ab initio/effective core potential calculations, while being hundreds of times faster.  相似文献   

9.
10.
5-Chloro-2-methoxybenzoates of La(III), Gd(III) and Lu(III) were synthesized as penta-, mono- and tetrahydrates with a metal to ligand ratio of 1:3 and with white colour typical of La(III), Gd(III) and Lu(III) ions. The complexes were characterized by elemental analysis, IR and FIR spectra, thermogravimetric and diffractometric studies. The carboxylate group appears to be a symmetrical, bidentate, chelating ligand. The complexes are polycrystalline compounds. Their thermal stabilities were studied in air and inert atmospheres. When heated they dehydrate to form anhydrous salts which next in air are decomposed through oxychlorides to the oxides of the respective metals while in inert atmosphere to the mixture of oxides, oxychlorides of lanthanides and carbon. The most thermally stable in air, nitrogen and argon atmospheres is 5-chloro-2-methoxybenzoate of Gd(III). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The proton and metal complex equilibria of trans-cyclohexane-1,2-diamine-N,N,N',N'-tetrakis(methylenephosphonic acid) (CDTP) with lanthanide(iii) ions, where Ln(III) = La(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Ho(III) and Lu(III) were studied. The stoichiometry, protonation and complex formation constants were determined by potentiometric titration at 25.0 degrees C and ionic strength of 0.1 mol dm(-3) (KCl). All metal ions form several species: [LnH4L]-, [LnH3L](2-), [LnH2L](3-), [LnHL](4-), [LnL](5-), [LnH(-1)L](6-) and [LnH(-2)L](7-) in the pH range between 2 and 11. The stability constants log beta(LnL) were found to be between 14.7 and 16.7. The studied complexes were also characterized by spectroscopic methods (31P NMR, UV-Vis absorption and emission spectroscopy). These studies allowed to reveal a distinct structural change of the Ln(III)-CDTP complex which occurs between protonated and hydroxy species in solutions at pH around 7.5. The major change is caused by the involvement of both nitrogen donors in the metal ion coordination occurring in ML species. The data obtained from UV-Vis spectroscopy allowed to draw conclusions about complex symmetry and to estimate a number of coordinated water molecules. The hydration number or more precisely the number of two OH oscillators was found to be approximately one in all species formed over the pH range between 5 and 10. The structure of the major hydroxy complex was supported by X-ray crystallographic data. The crystal structures of the Eu(III) and Tb(III) complexes clearly show that the CDTP ligand is coordinated to the Ln(III) ion by two nitrogen and four oxygen atoms in such a way that only one oxygen atom from each phosphonic group is placed in the lanthanide inner sphere. The monomeric complex anion is connected to a symmetry related ion through short hydrogen bonds formed by two hydroxy ions and one water molecule. In this way the two neighbouring anions form a quasi-dimer in which one of the Ln(III) ion is seven-coordinate (two N atoms, four O atoms and one hydroxy ion) and the other is eight-coordinate (two N atoms, four O atoms, one hydroxy ion and one water molecule).  相似文献   

12.
The octakis(DMSO) (DMSO = dimethylsulfoxide) neodymium(III), samarium(III), gadolinium(III), dysprosium(III), erbium(III), and lutetium(III) iodides crystallize in the monoclinic space group P21/n (No. 14) with Z = 4, while the octakis(DMSO) iodides of the larger lanthanum(III), cerium(III), and praseodymium(III) ions crystallize in the orthorhombic space group Pbca (No. 61), Z = 8. In all [Ln(OS(Me2)8]I3 compounds the lanthanoid(III) ions coordinate eight DMSO oxygen atoms in a distorted square antiprism. Up to three of the DMSO ligands were found to be disordered and were described by two alternative configurations related by a twist around the metal-oxygen (Ln-O) bond. To resolve the atomic positions and achieve reliable Ln-O bond distances, complete semirigid DMSO molecules with restrained geometry and partial occupancy were refined for the alternative sites. This disorder model was also applied on previously collected data for the monoclinic octakis(DMSO)yttrium(III) iodide. At ambient temperature, the eight Ln-O bond distances are distributed over a range of about 0.1 A. The average value increases from Ln-O 2.30, 2.34, 2.34, 2.36, 2.38, 2.40 to 2.43 A (Ln = Lu, Er, Y, Dy, Gd, Sm, and Nd) for the monoclinic [Ln(OSMe2)8]I3 structures, and from 2.44, 2.47 to 2.49 A (Ln = Pr, Ce, and La) for the orthorhombic structures, respectively. The average of the La-O and Nd-O bond distances remained unchanged at 100 K, 2.49 and 2.43 A, respectively. Despite longer bond distances and larger Ln-O-S angles, the cell volumes are smaller for the orthorhombic structures (Ln = Pr, Ce, and La) than for the monoclinic structure with Ln = Nd, showing a more efficient packing arrangement. Raman and IR absorption spectra for the [Ln(OS(CH3)2)8]I3 (Ln = La, Ce, Pr, Nd, Gd, Tb, Dy, Er, Lu, and Y) compounds, also deuterated for La and Y, have been recorded and analyzed by means of normal coordinate methods. The force constants for the Ln-O and S-O stretching modes in the complexes increase with decreasing Ln-O bond distance and show increasing polarization of the bonds for the smaller and heavier lanthanoid(III) ions.  相似文献   

13.
The structures of the hydrated lanthanoid(III) ions including lanthanum(III) have been characterized in aqueous solution and in the solid trifluoromethanesulfonate salts by extended X-ray absorption fine structure (EXAFS) spectroscopy. At ambient temperature the water oxygen atoms appear as a tricapped trigonal prism around the lanthanoid(III) ions in the solid nonaaqualanthanoid(III) trifluoromethanesulfonates. Water deficiency in the capping positions for the smallest ions starts at Ho and increases with increasing atomic number in the [Ln(H(2)O)(9-x)](CF(3)SO(3))(3) compounds with x=0.8 at Lu. The crystal structures of [Ho(H(2)O)(8.91)](CF(3)SO(3))(3) and [Lu(H(2)O)(8.2)](CF(3)SO(3))(3) were re-determined by X-ray crystallography at room temperature, and the latter also at 100 K after a phase-transition at about 190 K. The very similar Ln K- and L(3)-edge EXAFS spectra of each solid compound and its aqueous solution indicate indistinguishable structures of the hydrated lanthanoid(III) ions in aqueous solution and in the hydrated trifluoromethanesulfonate salt. The mean Ln--O bond lengths obtained from the EXAFS spectra for the largest ions, La-Nd, agree with estimates from the tabulated ionic radii for ninefold coordination but become shorter than expected starting at samarium. The deviation increases gradually with increasing atomic number, reaches the mean Ln-O bond length expected for eightfold coordination at Ho, and increases further for the smallest lanthanoid(III) ions, Er-Lu, which have an increasing water deficit. The low-temperature crystal structure of [Lu(H(2)O)(8.2)](CF(3)SO(3))(3) shows one strongly bound capping water molecule (Lu-O 2.395(4) A) and two more distant capping sites corresponding to Lu-O at 2.56(1) A, with occupancy factors of 0.58(1) and 0.59(1). There is no indication of a sudden change in hydration number, as proposed in the "gadolinium break" hypothesis.  相似文献   

14.
The coordination properties of the macrocyclic receptor N,N'-bis[(6-carboxy-2-pyridyl)methylene]-1,10-diaza-15-crown-5 (H(2)bp15c5) towards the lanthanide ions are reported. Thermodynamic stability constants were determined by pH-potentiometric titration at 25 °C in 0.1 M KCl. A smooth decrease in complex stability is observed upon decreasing the ionic radius of the Ln(III) ion from La [log K(LaL) = 12.52(2)] to Lu [log K(LuL) = 10.03(6)]. Luminescence lifetime measurements recorded on solutions of the Eu(III) and Tb(III) complexes confirm the absence of inner-sphere water molecules in these complexes. (1)H and (13)C NMR spectra of the complexes formed with the diamagnetic La(III) metal ion were obtained in D(2)O solution and assigned with the aid of HSQC and HMBC 2D heteronuclear experiments, as well as standard 2D homonuclear COSY and NOESY spectra. The (1)H NMR spectra of the paramagnetic Ce(III), Eu(III) and Yb(III) complex suggest nonadentate binding of the ligand to the metal ion. The syn conformation of the ligand in [Ln(bp15c5)](+) complexes implies the occurrence of two helicities, one associated with the layout of the picolinate pendant arms (absolute configuration Δ or Λ), and the other to the five five-membered chelate rings formed by the binding of the crown moiety (absolute configuration δ or λ). A detailed conformational analysis performed with the aid of DFT calculations (B3LYP model) indicates that the complexes adopt a Λ(λδ)(δδλ) [or Δ(δλ)(λλδ)] conformation in aqueous solution. Our calculations show that the interaction between the Ln(III) ion and several donor atoms of the crown moiety is weakened as the ionic radius of the metal ion decreases, in line with the decrease of complex stability observed on proceeding to the right across the lanthanide series.  相似文献   

15.
N,N二 (N亚甲基 2吡咯烷酮 )丙氨酸是我们最近合成的一个新化合物(如图 1所示),经 X射线衍射实验测定了它的晶体结构,得到了其结构数据。实验结果表明它与稀土离子及其邻菲咯啉形成的配合物具有光致变色的性能。针对该柔性分子具有较复杂的三维构型结构, 为了更好地研究该化合物与金属离子的配位性能,我们基于量子化学 AM1方法的计算结果,从标题化合物分子的几何构型、能量特性、电荷布居、前线分子轨道特征等方面研究了该化合物的配位性能,并与实验进行了比较。 1计算方法 本文根据常见的键长键角数据作为初始化参数…  相似文献   

16.
The binding contants, adsorption free energies, absolute adsorbate number densities, and interfacial charge densities of Al(III), Sc(III), Y(III), La(III), and Gd(III) interacting with fused silica/water interfaces held at pH 4 were determined using second harmonic generation and the Eisenthal χ((3)) technique. By examining the relationship between the measured adsorption free energies and the electric double layer interfacial potential at multiple electrolyte concentrations, we elucidate the charge state and possible binding pathways for each ion at the fused silica surface. Al(III) and Sc(III) ions are found to bind to the fused silica surface as fully hydrated trivalent species in a bidentate geometry. In contrast, the Y(III), La(III), and Gd(III) ions are each shown to adsorb to the silica surface in a decreased charge state, but the extent and mode of binding varies with each ion. By quantifying the exponential sensitivity of the surface coverage of the adsorbed ions to their charge state directly at the fused silica/water interface, we provide benchmarks for theory calculations describing the interactions of metal ions with oxide interfaces in geochemistry and hope to improve the prediction of trivalent metal ion transport through groundwater environments.  相似文献   

17.
Wang R  Song D  Seward C  Tao Y  Wang S 《Inorganic chemistry》2002,41(20):5187-5192
Two new luminescent lanthanide complexes Ln(2)(acac-azain)(4)(mu-acac-azain)(2) [acac-azain = 1-(N-7-azaindolyl)-1,3-butanedionato, Ln = Tb(III), 1, Y(III), 2] have been synthesized and structurally characterized. These two dinuclear complexes are isostructural with the two lanthanide ions being bridged by two acac-azain ligands. Each of the two metal ions is further chelated by four oxygen atoms from two acac-azain ligands, resulting in a coordination number eight for each metal ion. 1 displays characteristic Tb(III) emission bands while 2 displays weak blue luminescence attributable to the ligand. Single-layer and double-layer electroluminescent devices for compound 1 were fabricated, where compound 1 doped PVK layer functions as both the emitting layer and the hole transport layer and PBD functions as an electron transport layer (in the double-layer device), demonstrating that compound 1 is a promising green emitter in electroluminescent devices.  相似文献   

18.
We report here a structural and photophysical study of lanthanide complexes with the di-deprotonated form of the bibracchial lariat ether N,N'-bis(2-salicylaldiminobenzyl)-4,10-diaza-12-crown-4 (L(3)) (Ln = Ho(III)-Lu(III)). The X-ray crystal structures of [Ho(L(3)-2H)](ClO(4)) (1) and [Er(L(3)()-2H)](ClO(4)) (2) show the metal ion being eight-coordinate and deeply buried in the cavity of the dianionic receptor. Both sidearms of L(3) are on the same side of the crown moiety, resulting in a syn conformation. Likewise, the lone pair of both pivotal nitrogen atoms is directed inward of the receptor cavity in an endo-endo arrangement and the coordination polyhedron around the lanthanide ion may be described as a distorted square antiprism that shows a deformation toward a square prism by ca. 11 degrees . Attempts to isolate complexes of the lightest members of the lanthanide series were unsuccessful, which suggests a certain degree of selectivity of L(3) toward the heaviest Ln(III) ions. This was evaluated and rationalized on the basis of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46+4f(n) effective core potential for lanthanides. For the [Ln(L(3)()-2H)](+) systems, the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, for the related [Ln(L(1)-2H)](+) and [Ln(L(2)()-2H)](+) systems our ab initio calculations provide geometries in which some of the bond distances of the metal coordination environment increase across the lanthanide series. Thus, thanks to the variation of the ionic radii of the lanthanide ions, receptors L(1)() (N,N'-bis(2-salicylaldiminobenzyl)-4,13-diaza-18-crown-6) and L(2) (N,N'-bis(2-salicylaldiminobenzyl)-1,10-diaza-15-crown-5) are specially adapted for the complexation of the lighter lanthanide ions. On the other hand, the erbium and ytterbium complexes of L(3) have been shown to be emissive in the near-IR. Time-resolved studies of complexes confirm that solvent is excluded from the inner coordination sphere in solution. The luminescence properties of the complexes make them ideally suited for use as luminescent tags and suggest that q = 0 complexes of erbium may, after all, be useful as luminescent tags in protic media.  相似文献   

19.
A series of lanthanide(III) complexes formulated as M[Ln(Hdo3ap)].xH(2)O (M = Li or H and Ln = Tb, Dy, Er, Lu, and Y) with the monophosphonate analogue of H(4)dota, 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic-10-methylphosphonic acid (H(5)do3ap), was prepared in the solid state and studied using X-ray crystallography. All of the structures show that the (Hdo3ap)(4-) anion is octadentate coordinated to a lanthanide(III) ion similarly to the other H(4)dota-like ligands, i.e., forming O(4) and N(4) planes that are parallel and have mutual angle smaller than 3 degrees . The lanthanide(III) ions lie between these planes, closer to the O(4) base than to the N(4) plane. All of the structures present the lanthanide(III) complexes in their twisted-square-antiprismatic (TSA) configuration. Twist angles of the pendants vary in the range between -24 and -30 degrees, and for each complex, they lie in a very narrow region of 1 degree. The coordinated phosphonate oxygen is located slightly above (0.02-0.19 Angstroms) the O(3) plane formed with the coordinated acetates. A water molecule was found to be coordinated only in the terbium(III) and neodymium(III) complexes. The bond distance Tb-O(w) is unusually long (2.678 Angstroms). The O-Ln-O angles decrease from 140 degrees [Nd(III)] to 121 degrees [Lu(III)], thus confirming the increasing steric crowding around the water binding site. A comparison of a number of structures of Ln(III) complexes with DOTA-like ligands shows that the TSA arrangement is flexible. On the other hand, the SA arrangement is rigid, and the derived structural parameters are almost identical for different ligands and lanthanide(III) ions.  相似文献   

20.
New solid amorphous compounds of Tm(III), Yb(III) and Lu(III) with morin have been synthesized. Their composition and some physicochemical properties have been studied by elemental analysis, thermogravimetric analysis, IR spectroscopy as well as by conductivity, UV/Vis, MS, and NMR spectroscopies in solution. The spectroscopic studies have indicated that the 3-OH hydroxyl group and the carbonyl oxygen of morin were involved in the coordination of metal ion. The antibacterial activity of the synthesized compounds has been determined by the cylinder-plate diffusion and dilution methods (determination of minimum inhibitory concentration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号