首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
New optogalvanic (OG) Rydberg-Rydberg transitions of neon have been observed in the near-infrared region (830-870 nm), using a commercial Fe-Ne hollow cathode. They involve transitions from the 3d[3/2] J=1 and 3d[7/2] J=3,4 levels to high-lying nf levels. In addition, other OG transitions, observed in the blue range, have been completely assigned to ns, nd, ns′ and nd′ Rydberg series excited from the 3p[1/2] J=1 and 3p[5/2] J=2,3 levels of neon. These transitions and assignments allowed us to extend the range of tunable laser calibration on the two edges of the visible range, where there is a lack of available calibration lines, i.e. the near-infrared and the far-blue range, with a 0.01 nm absolute accuracy.  相似文献   

2.
The interaction of light with a single gold nanorod (GNR) depends strongly on the polarization and wavelength of the light. For isolated GNRs, the maximum of the polarization (wavelength)‐dependent linear and nonlinear absorption appear at the same excitation polarization (wavelength). Here, it is demonstrated that these relationships can be manipulated in a GNR assembly composed of randomly distributed and oriented GNRs by controlling the plasmonic coupling strength between GNRs. It is revealed that the strongly localized modes resulting from the plasmonic coupling of GNRs play a crucial role in determining these relationships. For a GNR tetramer, it is shown by numerical simulation that the maximum two‐photon absorption achieved at a particular polarization can be switched to the minimum absorption and vice versa by controlling the coupling strength. More importantly, it is demonstrated both numerically and experimentally that the two‐photon‐absorption peak of a GNR assembly can be made to be different from its single‐photon‐absorption peak by increasing the coupling strength. Both properties are distinct from previous experimental observations. Our findings provide a useful guideline for engineering the interaction of light with complex plasmonic systems.

  相似文献   


3.
The forces between a sharp tip and a sample are characteristic for different sample materials. A new method for quantifying the elastic tip–sample interaction forces from measured frequency vs. distance curves is presented. The dynamic force–spectroscopy curves investigated were obtained by dynamic force microscopy under ultrahigh vacuum (UHV) conditions for large vibration amplitudes with commercial levers/tips. The full non-linear force–distance relationship is deduced via a numerical algorithm, where the equation of motion describing the oscillation of the tip is solved explicitly. The elastic force distance dependence can be determined by fitting the results of a computer simulation to experimental frequency vs. distance data. The obtained force–distance curves can be compared quantitatively with theoretical models.  相似文献   

4.
Heinrich Bech  Alfred Leder 《Optik》2004,115(5):205-217
This paper contains the results of our numerical investigations into particle sizing by analysis the time-dependent formation of the scattered light. We use an extended Mie theory for calculation the differences in time between the signals of reflection and higher order of refraction. The corresponding optical path lengths of light rays are computed by the principles of geometrical optics. By using a Debye series expansion it is possible to take into account single orders of scattered light. In detail we demonstrate the pulse-induced generation of scattered light for the refraction of first and second order as function of the detection angle.  相似文献   

5.
The modulation instability development of intensive surface plasmon–polariton waves in a thin metal film is studied. It is shown both analytically and numerically that the modulation‐instability effect can give rise to spatial redistribution and longitudinal localization of surface plasmon–polariton wave energy on the subwavelength scale. Analytical expressions for the driving parameters of the modulation instability process ? nonlinearity and dispersion ? are derived. The impact of the film thickness and dielectric permittivities of constituents on the dynamics of surface plasmon–polariton wave transformation is considered. Numerical simulations show that in the layer structure comprising a silver film of subwavelength thickness a train of subpicosecond optical pulses with high repetition rate can be generated.

  相似文献   


6.
We study the electronic structure of tin-phthalocyanine (SnPc) molecules adsorbed on a Ag(1 1 1) surface by high-resolution photoelectron spectroscopy. We particularly address the effect of different SnPc coverages on the interaction and charge transfer at the interface. The results give evidence for a covalent molecule–substrate interaction, which is temperature and coverage dependent. The valence and core level spectra as well as the work function measurements allow us monitoring subtle differences in the strength of the interface interaction, thus demonstrating the sensitivity of the methods. The results consistently show the effect of charge exchange between substrate and molecules which obviously leads to a net charge transfer into the SnPc molecules, and which is increased with decreasing coverage. Surprisingly, the Sn3d core levels are neither effected by variations of charge transfer and interaction strength, nor by a possible “Sn-up” or “Sn-down” orientation, which have been observed for sub-monolayers.  相似文献   

7.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, we investigate the influence of the molecular beam epitaxy (MBE) growth conditions (substrate temperature and arsenic flux) on the photovoltaic (PV) behavior and asymmetric characteristics of nominally identical well-doped AlGaAs/AlAs/GaAs double-barrier quantum well infrared photodetectors. This PV effect, already studied and reported in the literature, has been attributed to unintentional asymmetries of the potential profile introduced during the MBE growth process; in particular, due to an inequivalence of the AlAs layer properties or, more plausibly, to local space-charge regions originating from silicon segregation. The different “unintended” asymmetries for the samples considered in this work, validated by both dark-current and responsivity measurements, point at first glance to the existence of structural dissimilarities affecting the PV response. Hence, in order to clarify the influence of the suggested AlAs barriers inequivalence or interface roughness and quality in the origin of the PV signal we have performed a direct layer structural characterization by cross-section high resolution transmission electron microscopy. The analysis yields that regardless of the different growth conditions, the layers properties are similar, suggesting they play a minor role in the origin of the PV effect. Also this characterization tool may provide a further evidence of Si segregation being the main responsible. Concerning its growth conditions dependence, it seems that the As flux, and not only the substrate temperature, may affect Si segregation and hence the PV response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号