首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the evolution of magnetic and structural properties of Y1−xPrxBa2Cu3Oy (x0.5 and x=1) single crystals and polycrystalline materials when the oxygen concentration y is varied from under- to overdoping. We have found a monotonous evolution of the Pr Néel temperature for x=1 samples and a maximum of the superconducting critical temperature for the x0.5 samples. The structural properties as detected by X-ray diffraction and Raman spectroscopy show no instabilities when crossing the optimal doping region as was found in the x=0 material.  相似文献   

2.
New Scheelite-related solid solutions of the compositions Nax/2Bi1−x/2MoxV1−xO4 (0≤x≤1) and Bi1−x/3 MoxV1−xO4(0≤x≤0.2) have been synthesised by the substitution of Na and Mo at the A and B sites respectively of the ABO4 type ferroelastic BiVO4. The phases were characterised using chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, and Raman spectroscopy. While almost a continuous solid solution is obtained for the series Nax/2Bi1−x/2MoxV1−xO4, the absence of Na at the A-site results only in a narrow stability region for the other series, Bi1−x/3 MoxV1−xO4 where 0≤x≤0.2. Raman spectra of selected samples at room temperature also suggest that vanadium and molybdenum atoms are disordered at the tetrahedral sites.  相似文献   

3.
Samples of Bi2Sr2Ca1−xPrxCu2Oy have been characterized by resistivity and thermoelectric power measurements. All metallic samples show superconductivity with a maximum Tc = 90 K at X = 0.2. The sample of x = 0.6 shows a crossover from hopping conduction at low temperature above Tc to metallic conduction at high temperature. For the metallic samples below x = 0.6, the results of thermoelectric power are well fitted by both of a phenomenological band spectrum model and the Nagaosa and Lee model.  相似文献   

4.
The effects of Fe-substitution of YBa2Cu3Oy have been investigated by means of Raman scattering, X-ray diffraction, resistivity and susceptibility measurements. A series of samples of YBa2(Cu1 − xFex)3Oy with different dopant concentration (0 x 0.15) has been prepared in two batches, the second set having undergone twice the heat and mechanical treatment used to produce the first batch. Considerable improvement in the superconducting transition temperature, Tc, is obtained upon reprocessing. A phase transformation from orthorhombic to tetragonal symmetry is observed for x=0.05 from the X-ray measurements in agreement with previous work. Using a micro-Raman technique, all five Ag vibrational modes have been measured and their dependence on Fe-concentration is analyzed. There are indications that iron substitutes for copper at both sites and that the structure is a mixture of orthorhombic and tetragonal microdomains for all x.  相似文献   

5.
The polarized Raman spectra of Nd1+xBa2−xCu3O7−δ (−0.023≤x≤0.107) and Pr1+xBa2−xCu3O7−δ (0.01≤x≤0.15) single crystals have been investigated. It was found that the Cu(2) Ag mode softens by 6 cm−1 in Nd 1:2:3 and 4 cm−1 in Pr 1:2:3 as x increases. These frequency shifts cannot be explained by the change in the relevant bond lengths due to Nd(Pr)-substitution for Ba. The variations with x of the two low frequency modes may be affected by change of their hybridization and/or change of their force constants. The linewidths of Ba mode in Pr 1:2:3 are broader than those in Y 1:2:3. This result suggests that the Pr substitution on Ba sites occurred even in a very small value of x. In x(yy) geometry the relative intensity of the Ba and O(4) modes in Nd 1:2:3 is greater than those in Pr 1:2:3. The difference between Nd 1:2:3 and Pr 1:2:3 in the relative intensity of the Ba and O(4) modes may be produced by the chains.  相似文献   

6.
On the basis of chemical, thermal analysis and Cu K-edge X-ray absorption measurements, oxygen content in the Nd1+xBa2−xCu3Oz solid solution was determined between 1000°C in air and 400°C in oxygen for x=0.05–0.9 compositions. It has been observed that the oxygen nonstoichiometry Δz of the Nd1+xBa2−xCu3O7+x/2−Δz solid solution decreases 2–2.5 times for a large substitution (Δz≈0.3–0.33 for x=0.9), despite of the acclaimed higher total oxygen content. The difference in nonstoichiometry is explained by a higher average value of the copper oxidation state (ACV), which is vital for the solid solution with large x even at elevated temperatures (ACV≈2–2.05 for x>0.3 at 1000°C, PO2=0.21 atm). On the contrary, the ACV after complete oxygenation is almost constant (about 2.25–2.3) for the whole series. The x-dependence of the oxygen content is not monotonous and structural phase transitions can be observed at x=0.3 and x=0.6, as confirmed by the X-ray diffraction and the Raman scattering spectroscopy. The first well-known transition is connected with the oxygen disorder due to the Nd substitution for Ba at random Ba-sites. In the present work, it is proved by the apical oxygen mode broadening in Raman spectra. Ordering of the Nd and Ba atoms with a subsequent orthorhombic distortion of the lattice may occur even at 1000°C in air due to the second transformation at x≈0.6. The invariable orthorhombicity of the Nd-rich solid solution with x>0.6 is not caused by the oxygen absorption as in the x=0.05 case. Existence of high- and low-temperature orthorhombic modifications of this solid solution has been observed for the first time. Finally, a tentative 3D (zxT) diagram is suggested for the Nd1+xBa2−xCu3Oz solid solution up to 1000°C in air, including the new x=0.6–0.9 region.  相似文献   

7.
The n = 2 Aurivillius phase Bi2 − xPbxSr1 − xNd2O9 was successfully synthesized as a ceramic material over the whole range of simultaneous, charge compensated substitution x = 0–1.0. Structural investigations were performed by Rietveld refinement applying different space groups Fmmm and A21am, and additionally by X-ray absorption spectroscopy (EXAFS) on the Nd LIII-edge, confirming the accommodation of Nd on the atomic sites of Sr, which implies the substitution of Bi3+ by the isoelectronic Pb2+. The ferroelectric transition temperature Tc = 270 °C of the substituted powders with x = 0.4 and 1.0 is distinctly reduced compared to the unsubstituted sample with Tc = 450 °C. In temperature resolved powder X-ray diffraction patterns no structural phase transition could be detected.  相似文献   

8.
(Ba1−xLax)2In2O5+x, whose end member is Ba2In2O5, is an oxygen-deficient perovskite oxide showing high oxide-ion conductivity. In order to clarify the reason why the high oxide ion conductivity appeared in this system, the electrical conductivity was measured as a function of temperature and La content. With an increasing La content, the discontinuous jump of ion conductivity in the Arrhenius plot, which is related to the disordering of the oxygen vacancies, disappeared for the sample with x0.2. Above x=0.12, the ion conductivity linearly increased with La content, while the activation energy remained constant with respect to the La content. Moreover, the conductivity for x=0.6 was 0.042 (S/cm) at 1073 K, which exceeded that of 8 mol% yttria-stabilized zirconia. The higher oxide-ion conductivity of this system could be dominated by the amount of mobile oxygen ions.  相似文献   

9.
Ceramic samples of Ca1−xYxMnO3 were synthesized by a liquid-mix method obtaining single phase materials, for 0.1x1, with orthorhombic structure. The cell volume increases with x indicating that changes in the Mn electronic state overcomes the progressive diminishing of the (Ca, Y) cationic radius, rCa>rY. We observed a continuous broadening of the electronic spin resonance line width with x. This is explained in terms of the increasing orthorhombic distortions. We have measured the DC magnetization for the x=1 compound YMnO3. Our results are compatible with a G-type antiferromagnet with TN=44 K.  相似文献   

10.
The magnetic phase diagram has been investigated in the C14 type (Zr1−xNbx)Fe2 with x0.7 from 93Nb NMR and magnetization measurements. In the compound with x = 0.825 a first order-like transition has been found to occur around 25 K from a canted state with the ferromagnetic moment in the basal plane to a ferromagnetic state with decreasing temperature.  相似文献   

11.
In order to understand the mechanism that gives rise to superconductivity in the ceramic superconductors of the type BaxK1 − xBiO3, we analyze the thermodynamic properties with the use of the Eliashberg equations. For these calculations we used the electron-phonon spectral density function 2(ω)F(ω), calculated by Shirai et al. [1] from first principles for two different K concentrations, x=0.5 and x=0.7.  相似文献   

12.
The variations of induced magnetic anisotropy with annealing and measuring temperatures in metallic glasses (Fe1 − xCox)78Si10B12 have been measured. It was found that Ku (T) was proportional to Mns (T) for T below 200°C, and the index n varied with the cobalt content x and annealing conditions, not being smaller than 3. To the predictions of the existing pair-ordering and single-ion theories, the above results are anomalous. By considering the distributions of exchange integrals and activation energies in metallic glasses, this anomalous behaviour could be explained properly.  相似文献   

13.
The dielectric constant (′) and dielectric loss (tan δ) for hexaferrites BaCo2−xZnxFe16O27 have been studied as a function of frequency (f), temperature (T) and composition (x). The experimental results indicate that ′ and tan δ above the relaxation frequency only decrease as the frequency increases and as the temperature decreases. Tan δ shows the dielectric relaxation at certain critical frequencies which rise as temperature increases. The activation energy for the dielectric relaxation (ED), ′, and tan δ are found to be minimum for x = 0.8.  相似文献   

14.
Magnetic transitions in La(Fe1−xCox)11.4Si1.6 compounds with x=0–0.08, have been studied by DC magnetic measurements and Mössbauer spectroscopy. The temperature dependence of the Landau coefficients has been derived by fitting the magnetization, M0H), using the Landau expansion of the magnetic free energy. For x0.02 there is a strongly first-order magnetic phase transition between ferromagnetic and paramagnetic (F–P) states in zero external field and a metamagnetic transition from paramagnetic to ferromagnetic (P–F) above Tc. Increasing the cobalt content drives the F–P transition towards second order and eliminates the metamagnetic transition.  相似文献   

15.
Pr concentration dependence of the superconducting transition temperature Tc in the Ho1−xPrxBa2Cu3O7−δ system is determined from measurements of DC electrical resistance. This dependence coincides with that for the parallely studied Y1−xPrxBa2Cu3O7−δ reference system. Both systems have the same value of the critical concentration xc=0.58, in accordance with nearly equal ionic radii of Ho3+ and Y3+ ions. It has been shown that the Tc(x) curve can be described with a single mechanism based on a decreasing number of sheet holes trapped by PrIV-ions, if one takes also into account that the number of these ions changes with x.  相似文献   

16.
Magnetic characteristics of Ti-, Zr- and Hf-substituted PrCo5 alloys have been studied over the temperature range from 77 to 300 K and for applied fields up to 20 kOe. It is established that Ti, Zr and Hf substitute for Pr. Single-phase materials are formed for all values of x up to 0.2 in the system Pr1−xZrxCo5 but for x only up to 0.1 for Pr1−xTix Co5 and Pr1−xHfxCo5 alloys. Larger amounts of Zr can be substituted if the material is made hyperstoichiometric in Co, e.g., Pr0.7Zr0.3Co5.5. All the alloys show a decrease in magnetic moment and an increase in Curie temperature as x increases. Anisotropy fields decrease as x increases at 295 K. Anomalous behavior is observed at 77 K, suggested that these ternary alloys may have a cone structure at this temperature.  相似文献   

17.
The pressure effect on Tc of polycrystalline and single crystalline YBa2Cu3Ox investigated as a function of oxygen content x by ac-susceptibility measurements under helium pressure. In the overdoped region x> 6.93 the single crystals show a negative dTc/d p, as expected from the charge transfer model. For optimally doped samples with x = 6.93 we find dTc/d P = 0.4 K/GPa which points to pressure effects on Tc aside from charge transfer. In the underdoped region x < 6.93 the dTc/d p values obtained from the experiment depend strongly on the storage temperature of the sample during the experiment. When the samples are stored at temperatures well below 240 K throughout the entire experiment including pressure application and pressure release, dTc/d p increases to approx. 7 K/GPa at x = 6.7 but with a further decrease of the oxygen content the dTc/d p drops to approx. 2 K/GPa at x = 6.4. These effects are intrinsic to the YBa2Cu3Ox structure and can be explained by considering the anisotropic structure of YBa2Cu3Ox. The decrease of the c-axis lattice parameter results in a charge transfer to the CuO2-planes mainly [1], whereas the compression of the a- and b-axis lattice parameter is known to produce different pressure effects which are responsible for the peak in dTc/d p at x = 6.7 [2]. When pressure is changed at room temperature oxygen ordering effects occur which cause a relaxation of Tc to the equilibrium value Tc(p) at this pressure with a time constant depending on the oxygen content x. A decrease x results in a peak effect in dTc/d p at x = 6.7 again, which is enhanced to approx. 12 K/GPa. If the oxygen content is decreased further, dTc/d p first drops to 5 K/GPa at x = 6.6, but the increases to values of more than 20 K/GPa for x < 6.42. These giant pressure effects at low oxygen contents are mainly caused by a reversible Tc increase (dTc/d p)O due to pressure induced oxygen ordering via oxygen motion between unit cells.  相似文献   

18.
Oxygen tracer diffusion (D*) and surface exchange rate constant (k*) have been measured, using isotopic exchange and depth profiling by secondary ion mass spectrometry (SIMS), in La1−xSrxFe0.8Cr0.2O3−δ (x=0.2, 0.4 and 0.6). Measurements were made as a function of temperature (700–1000 °C) and oxygen partial pressure (0.21–10−21 atm) in dry oxygen, water vapour and water vapour/hydrogen/nitrogen mixtures. At high oxygen activity, D* was found to increase with increasing temperature and Sr content. The activation energies for D* in air are 2.13 eV (x=0.2), 1.53 eV (x=0.4) and 1.21 eV (x=0.6). As the oxygen activity decreases, D* increases as expected qualitatively from the increase in oxygen vacancy concentration. Under strongly reducing conditions, the measured values of D* at 1000 °C range from 10−8 cm2 s−1 for x=0.2 to 10−7 cm2 s−1 for x=0.4 and 0.6. The activation energies determined at constant H2O/H2 ratio are 1.21 eV (x=0.2), 1.59 eV (x=0.4) and 0.82 eV (x=0.6).

The surface exchange rate constant of oxygen for the H2O molecule is similar in magnitude to that for the O2 molecule and both increase with increasing Sr concentration.  相似文献   


19.
Structure and magnetic properties of the Zr1−xMnxCo2+δ alloys were studied for 0 x <0.7, δ=0, 0.45. The cubic C15 Laves phase structure shows Mn solubility up to x≈0.4. The other Laves phase with the hexagonal C36 structure found for x0.5 apparently has a small region of Mn solubility in the vicinity of Zr0.4Mn0.6Co2. Though the parent Mn-free compounds are known to be paramagnetic, the Mn-substituted alloys show ferromagnetic behavior with the Curie temperatures up to 625 K and the room-temperature saturation magnetization of about 100 emu/g. The onset of ferromagnetism with the Mn substitution for Zr may be caused by polarization of itinerant 3d electrons, like it was earlier supposed for the off-stoichiometric ZrCo2+δ. The universal composition dependencies of the intrinsic magnetic properties for different δ can be obtained, if plotted against the amount of zirconium atoms missing in its sublattice. The room-temperature anisotropy with the noticeable anisotropy field of 24 kOe and the 1 1 0 easy magnetization direction laying in a basal plane was found in the hexagonal Zr0.5Mn0.5Co2.  相似文献   

20.
Tracer diffusion of 18O in dense, polycrystalline La1−xSrxCoO3 for x = 0.1 has been measured in the temperature range 400 to 600 °C and at 500 °C for x = 0.2 at an oxygen partial pressure of 1 × 105 Pa. Depth profiles were obtained by secondary ion mass spectrometry. The diffusion coefficient for La0.9Sr0.1CoO3 is given by D = (17–247) exp[(−232 ± 8 kJ/mole)/RT] cm2/s. This value is several orders of magnitude lower than D extrapolated from the results for x = 0.2 measured in the 700–900 °C temperature range. One possible explanation for the discrepancy is that the two measurements reflect different diffusion paths. As expected, La0.8Sr0.2CoO3 exhibits a higher diffusivity at 500 °C than does La0.9Sr0.1CoO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号