首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reaction of ZnO, HCl, H(3)PO(4), and 2-pyridylpiperazine in THF/H(2)O mixture at 75 degrees C for 72 h produces a new zinc phosphate, [(C(5)NH(5))(C(4)N(2)H(10))][Zn(H(2)PO(4))(2)(HPO(4))], I. Zinc phosphate I consists of single four-ring (S4R) units with terminal phosphoryl groups hanging from the Zn center. On reaction with zinc acetate dihydrate in the presence of water at 100 degrees C, I gave another new zinc phosphate, [(C(5)NH(5))(C(4)N(2)H(10))][Zn(2)(H(2)PO(4))(HPO(4))(PO(4))] x 2H(2)O, II. II has a layer structure with apertures formed by 4- and 8-T atoms (T = Zn, P). An examination of the two structures reveals that I and II are related, II being formed by the direct addition of Zn(2+) ions to I. Room-temperature (31)P MAS NMR studies show the presence of different phosphorus species in both compounds. An in-situ (31)P MAS NMR investigation on the formation of II from I in the presence of Zn(2+) ions and water reveals the transformation to be facile. What is noteworthy in this study is that the structural integrity of the S4Rs has been maintained during the formation of II. Donor-acceptor hydrogen bond interactions and pi-pi interactions involving the pyridyl groups also appear to play subtle roles in both phosphates. This study, the first attempt of its kind, combines the principles of supramolecular organic chemistry with inorganic building units and contributes to our understanding of the formation of framework solids.  相似文献   

2.
The room-temperature crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)], an organically templated zinc phosphate containing [Zn(2)(HPO(4))(2)(H(2)PO(4))(4)](4)(-) molecular anions, and its transformation to compounds containing either one- or two-dimensional inorganic components, [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], or [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)], under hydrothermal conditions were studied in-situ using energy-dispersive X-ray diffraction. The ability to collect data during reactions in a large volume ( approximately 23 mL) Teflon-lined autoclave under real laboratory conditions has allowed for the elucidation of kinetic and mechanistic information. Kinetic data have been determined by monitoring changes in the integrated peak intensities of Bragg reflections and have been modeled using the Avrami-Erofe'ev expression. The crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] is a diffusion-controlled process, while nucleation is increasingly more important in determining the overall rate of the formation of [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)]. The transformation of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] to [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)] and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)] occurs via a dissolution-reprecipitation mechanism, while the transformation to [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)] may be the first observation of a direct topochemical conversion of one organically templated solid to another under hydrothermal conditions.  相似文献   

3.
New layered mixed divalent metal vinylphosphonates Cu(II) (1-x)Zn(II) (x)(O(3)PC(2)H(3)).H(2)O have been prepared from a range of pre-formed copper-zinc oxides Cu(II) (1-x)Zn(II) (x)O obtained by isomorphous substitution of zinc into the tenorite-type structure of Cu(II)O. The corresponding mixed divalent copper-zinc vinylphosphonates have been characterised by powder X-ray diffraction, elemental analysis, infrared spectroscopy and thermogravimetric analysis. All compounds have been shown to consist of a single-phase solid solution that crystallises in an monoclinic unit cell, space group P2(1)/c with a=9.86-9.90, b=7.61-7.64, c=7.32-7.35 A and beta=95.9-96 degrees, with the exception of the pure zinc vinylphosphonate (x=1), the structure of which is comparable to other Zn(II)(O(3)PR).H(2)O materials. Studies of the intercalation of n-butylamine into the range of copper-zinc vinylphosphonates have demonstrated that significant modulation of the adsorption properties occurs; whereas one mole of amine is intercalated into the pure zinc vinylphosphonate to give Zn(II)(O(3)PC(2)H(3)).(C(4)H(9)NH(2)), for all other members of the series two moles of amine are coordinated to give intercalated compounds of composition Cu(II) (1-x)Zn(II) (x)(O(3)PC(2)H(3)).[(C(4)H(9)NH(2))(1-x)(C(4)H(9)NH(2))(x)](2) from which the amine can be sequentially removed from the different metal sites; this opens up possibilities for further applications of these materials.  相似文献   

4.
A recently reported binuclear zinc hydroxide complex [(L(1)Zn(2))(mu-OH)](ClO(4))(2) (, L(1) = 2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-methylphenolate monoanion) containing a single bridging hydroxide was examined for thioester hydrolysis reactivity. Treatment of it with hydroxyphenylthioacetic acid S-methyl ester in dry CD(3)CN results in no reaction after approximately 65 h at 45(1) degrees C. Binuclear zinc hydroxide complexes of the N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine (L(2)) and N-methyl-N-((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)ethyl)amine (L(3)) chelate ligands were prepared by treatment of each ligand with molar equivalent amounts of Zn(ClO(4))(2).6H(2)O and KOH in methanol. These complexes, [(L(2)Zn)(2)(mu-OH)(2)](ClO(4))(2) and [(L(3)Zn)(2)(mu-OH)(2)](ClO(4))(2) (), which have been structurally characterized by X-ray crystallography, behave as 1 : 1 electrolytes in acetonitrile, indicating that the binuclear cations dissociate into monomeric zinc hydroxide species in solution. Treatment of them with one equivalent of hydroxyphenylthioacetic acid S-methyl ester per zinc center in acetonitrile results in the formation of a zinc alpha-hydroxycarboxylate complex, [(L(2))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O or [(L(3))Zn(O(2)CCH(OH)Ph)]ClO(4).1.5H(2)O, and CH(3)SH. These reactions, to our knowledge, are the first reported examples of thioester hydrolysis mediated by zinc hydroxide complexes. The results of this study suggest that a terminal Zn-OH moiety may be required for hydrolysis reactivity with a thioester substrate.  相似文献   

5.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

6.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

7.
Song HH  Zheng LM  Wang Z  Yan CH  Xin XQ 《Inorganic chemistry》2001,40(19):5024-5029
Four new zinc diphosphonate compounds with formulas [NH(3)(CH(2))(2)NH(3)]Zn(hedpH(2))(2).2H(2)O, 1, [NH(3)(CH(2))(n)()NH(3)]Zn(2)(hedpH)(2).2H(2)O, (n = 4, 2; n = 5, 3; n = 6, 4) (hedp = 1-hydroxyethylidenediphosphonate) have been synthesized under hydrothermal conditions at 110 degrees C and in the presence of alkylenediamines NH(2)(CH(2))(n)()NH(2) (n = 2, 4, 5, 6). Crystallographic data for 1: monoclinic, space group C2/c, a = 24.7422(15), b = 5.2889(2), c = 16.0338(2) A, beta = 117.903(1) degrees, V = 1856.17(18) A(3), Z = 4; 2: monoclinic, space group P2(1)/n, a = 5.4970(3), b = 12.1041(6), c = 16.2814(12) A, beta = 98.619(5) degrees, V = 1071.07(11) A(3), Z = 2; 3: monoclinic, space group P2(1)/n, a = 5.5251(2), b = 12.5968(3), c = 16.1705(5) A, beta = 99.182(1) degrees, V = 1111.02(6) A(3), Z = 2; 4: triclinic, space group P-1, a = 5.4785(2), b = 14.1940(5), c = 16.0682(6) A, alpha = 81.982(2) degrees, beta = 89.435(2) degrees, gamma = 79.679(2) degrees, V = 1217.11(8) A(3), Z = 2. In compound 1, two of the phosphonate oxygens are protonated. The metal ions are bridged by the hedpH(2)(2-) groups through three of the remaining four phosphonate oxygens, forming a one-dimensional infinite chain. The protonated ethylenediamines locate between the chains in the lattice. In compounds 2-4, only one phosphonate oxygen is protonated. Compounds 2 and 3 have a similar three-dimensional open-network structure composed of [Zn(2)(hedpH)(2)](n) double chains with strong hydrogen bonding interactions between them, thus generating channels along the [100] direction. The protonated diamines and water molecules reside in the channels. Compound 4 contains two types of [Zn(2)(hedpH)(2)](n) double chains which are held together by strong hydrogen bonds, forming a two-dimensional network. The interlayer spaces are occupied by the [NH(3)(CH(2))(6)NH(3)](2+) cations and water molecules. The significant difference between structures 2-4 is also featured by the coordination geometries of the zinc atoms. The geometries of those in 2 can be described as distorted octahedral, and those in 3 as distorted square pyramidal. In 4, two independent zinc atoms are found, each with a distorted octahedral and a tetrahedral geometry, respectively.  相似文献   

8.
Five new coordination polymers, namely, [Zn(2)(H(2)O)(2)(BBC)](NO(3))(DEF)(6) (DUT-40), [Zn(3)(H(2)O)(3)(BBC)(2)] (DUT-41), [(C(2)H(5))(2)NH(2)][Zn(2)(BBC)(TDC)](DEF)(6)(H(2)O)(7) (DUT-42), [Zn(10)(BBC)(5)(BPDC)(2)(H(2)O)(10)](NO(3))(DEF)(28)(H(2)O)(8) (DUT-43), and [Co(2)(BBC)(NO(3))(DEF)(2)(H(2)O)](DEF)(6)(H(2)O) (DUT-44), where BBC--4,4',4'-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate, TDC--2,5-thiophenedicarboxylate, BPDC--4,4'-biphenyldicarboxylate, DEF--,N-diethylformamide, were obtained under solvothermal conditions and structurally characterized. It has been shown that compounds DUT-40, DUT-41 and DUT-44 exhibit 2D layered structures with large hexagonal channels. Utilization of additional angular dicarboxylic TDC linker led to the formation of the DUT-42 compound with the structure consisting of three interpenetrated 3D networks. Using the linear co-linker dicarboxylic BPDC, DUT-43 was obtained which forms a complicated 3D architecture arising from the polycatenation of triple-layered 2D building units and 2D single layer units. The pore accessibility of the synthesized compounds in the liquid phase was proved by the adsorption of dye molecules.  相似文献   

9.
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.  相似文献   

10.
The zinc(II) complexes with ortho-hydroxy substituted arylhydrazo-β-diketonates [Zn(2)(CH(3)OH)(2)(μ-L(1))(2)] (5), [Zn{(CH(3))(2)SO}(H(2)O)(L(2))] (6), [Zn(2)(H(2)O)(2)(μ-L(3))(2)] (7) and [Zn(H(2)O)(2)(L(4))]·H(2)O (8) were synthesized by reaction of a zinc(II) salt with the appropriate hydrazo-β-diketone, HO-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) (H(2)L(1), 1), HO-2-O(2)N-4-C(6)H(3)-NHN=C{C(=O)CH(3)}(2) (H(2)L(2), 2), HO-2-C(6)H(4)-NHN=CC(=O)CH(2)C(CH(3))(2)CH(2)C(=O) (H(2)L(3), 3) or HO-2-O(2)N-4-C(6)H(3)-NHN=[CC(=O)CH(2)C(CH(3))(2)CH(2)C(=O) (H(2)L(4), 4). They were fully characterized, namely by X-ray diffraction analysis that disclosed the formation of extensive H-bonds leading to 1D chains (5 and 6), 2D layers (7) or 3D networks (8). The thermodynamic parameters of the Zn(II) reaction with H(2)L(2) in solution, as well as of the thermal decomposition of 1-8 were determined. Complexes 5-8 act as diastereoselective catalysts for the nitroaldol (Henry) reaction. The threo/erythro diastereoselectivity of the β-nitroalkanol products ranges from 8:1 to 1:10 with typical yields of 80-99%, depending on the catalyst and substrate used.  相似文献   

11.
The reaction equilibria [H(4)L](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(H(2)L)](2+) + 2HOAc (K(1)) and [Zn(H(2)L)](2+) + Zn(OAc)(2) right harpoon over left harpoon [Zn(2)L](2+) + 2HOAc (K(2)), involving zinc acetate and the perchlorate salts of the tetraiminodiphenol macrocycles [H(4)L(1)(-)(3)](ClO(4))(2), the lateral (CH(2))(n)() chains of which vary between n = 2 and n = 4, have been studied by spectrophotometric and spectrofluorimetric titrations in acetonitrile. The photoluminescence behavior of the complexes [Zn(2)L(1)](ClO(4))(2), [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(2)(mu-O(2)CR)](ClO(4)) (R = CH(3), C(6)H(5), p-CH(3)C(6)H(4), p-OCH(3)C(6)H(4), p-ClC(6)H(4), p-NO(2)C(6)H(4)), and [Zn(2)L(3)(mu-OAc)](ClO(4)) have been investigated. The X-ray crystal structures of the complexes [Zn(2)L(2)(H(2)O)(2)](ClO(4))(2), [Zn(2)L(3)(mu-OAc)](ClO(4)), and [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) have been determined. The complex [Zn(2)L(2)(mu-OBz)(OBz)(H(3)O)](ClO(4)) in which the coordinated water molecule is present as the hydronium ion (H(3)O(+)) on deprotonation gives rise to the neutral dibenzoate-bridged compound [Zn(2)L(2)(mu-OBz)(2)].H(2)O. The equilibrium constants (K) for the reaction [Zn(2)L(2)(H(2)O)(2)](2+) + A(-) right harpoon over left harpoon [Zn(2)L(2)A](+) + 2H(2)O (K), where A(-) = acetate, benzoate, or the carboxylate moiety of the amino acids glycine, l-alanine, l-histidine, l-valine, and l-proline, have been determined spectrofluorimetrically in aqueous solution (pH 6-7) at room temperature. The binding constants (K) evaluated for these systems vary in the range (1-8) x 10(5).  相似文献   

12.
Lei C  Mao JG  Sun YQ  Song JL 《Inorganic chemistry》2004,43(6):1964-1968
Hydrothermal reaction of H(3)PO(3), CH(3)NH(2), zinc(II) acetate, 4,4'-bipyridine (bipy), and (NH(4))(6)Mo(7)O(24).4H(2)O at 180 degrees C led to a novel organic-inorganic layered hybrid, [CH(3)NH(3)][H(2)bipy][Zn(4)(bipy)(3)(H(2)O)(2)Mo(V)(8)Mo(VI)O(36)(PO(4))].4H(2)O (1). Its structure was established by single-crystal X-ray diffraction. It crystallizes in the monoclinic space group P2(1)/c with cell parameters of a = 17.3032(2), b = 17.8113(3), and c = 23.4597 (4) A, beta = 106.410(1) degrees, V = 6935.6(2) A(3), and Z = 4. The structure of compound 1 features a novel 2D layer built from the 8e-reduced tetracapped Keggin [Zn(4)Mo(12)O(36)(PO(4))](3)(-) anions, which are further interconnected by bridging bipy ligands. The four zinc(II) ions are in tetrahedral, trigonal bipyramidal, and octahedral coordination geometries, respectively.  相似文献   

13.
Reaction of the amino-alkoxides HOCH(CH(2)NMe(2))(2) (Hbdmap) and HOC(CH(2)NMe(2))(3) (Htdmap) with [Ti(OR)(4)] yields a series of heteroleptic titanium alkoxides [Ti(OR)(4-n)(L)(n)] (L = bdmap, tdmap). Substitution of the monodentate alkoxide with the chelating alkoxides becomes progressively more difficult, with homogeneous products being obtained only for n = 1, 2. The structure of [Ti(OEt)(3)(bdmap)](2), a mu-OEt bridged dimer, has been determined. Hydrolysis of [Ti(OR)(2)(L)(2)], by adventitious moisture affords the dimeric oxo-alkoxides [Ti(O)(L)(2)](2), both of which have been characterised crystallographically. These two compounds have also been prepared by reaction of [Ti(NMe(2))(2)(L)(2)] with the hydrated metal salts [Zn(acac)(2).2H(2)O] and [Zn(OAc)(2).2H(2)O] using the intrinsic water molecules in these salts to react with the labile amido groups, though the former also produces Me(Me(2)N)C=C(H)C(O)Me from reaction of liberated HNMe(2) with the coordinated acac ligand, while the latter also affords the ligand exchange product [Zn(OAc)(bdmap)]. In neither case does the free dimethylamino group of [Ti(O)(L)(2)](2) coordinate a second metal. The dimeric structure of [Zn(OAc)(bdmap)](2) has been established, and the structure of the tetrameric oxo-alkoxide [Ti(O)(OPr(i))(OCH(2)CH(2)NMe(2))](4) is reported for comparison with others in this study. [Ti(OEt)(3)(bdmap)](2) has been used as a precursor in AACVD (Aerosol-Assisted Chemical Vapour Deposition) to generate amorphous TiO(2) films on glass at 440 degrees C, and TiO(2)@C nanoparticles of approximate diameter 350 nm with a carbon coating of width ca. 75 nm on heating in a sealed container at 700 degrees C.  相似文献   

14.
The structure elucidation of a new zinc phosphate [Co(II)(en)(3)][Zn(4)(H(2)PO(4))(3)(HPO(4))(2)(PO(4))(2 H(2)O)(2)] (1) reveals that the racemic cobalt complex templates the zinc phosphate framework in such a way that the local C(2) point symmetry of the structural motif of the inorganic framework conforms with that of the cobalt complex pairing with it, in essence transferring its chirality to the inorganic host. An analysis of hydrogen bonding between the guest molecules and the inorganic host framework reveals that hydrogen bonding is responsible for the stereospecific structural arrangement. Upon examining previously reported chiral metal-complex-templated structures of metal phosphates, it is revealed that such hydrogen bonding is the common origin for inducing chirality transfer in metal-phosphate frameworks templated with chiral metal complexes. Crystal data of 1: orthorhombic, Pbcn (no. 60), a=10.4787(8) A, b=20.0091(14) A, c=14.9594(10) A, and Z=2.  相似文献   

15.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

16.
The syntheses and structures of five new zinc phosphites [Zn(HPO(3))(C(4)H(6)N(2))] (1), [Zn(2)(HPO(3))(2)(C(10)H(10)N(2))(2)](2) (2), [Zn(HPO(3))(C(14)H(14)N(4))(0.5)] (3), [Zn(2)(HPO(3))(2)(C(14)H(14)N(4))].0.4H(2)O (4), and [Zn(2)(HPO(3))(2)(C(14)H(14)N(4))] (5) are reported. In compounds 1-3, the zinc atoms are ligated by 1-methylimidazole, 1-benzylimidazole, and 1,4-bis(imidazol-1-ylmethyl)benzene, respectively, while compounds 4 and 5 are synthesized in the presence of the same bifunctional ligand, 1,3-bis(imidazol-1-ylmethyl)benzene. The inorganic framework of compound 1 is composed of vertex-shared ZnO(3)N and HPO(3) tetrahedra that form 4-rings, which, in turn, are linked to generate a one-dimensional ladder structure. In 2, the inorganic framework is composed of 4-rings and 8-rings to form the well-known 4.8(2) 2D network. This is connected via C-H...pi interactions between 1-benzylimidazole ligand to generate a pseudo-pillared-layer structure. In 3, the inorganic framework again has the 4.8(2) topology pillared by the bis(imidazole) ligand, 1,3-bis(imidazol-1-ylmethyl)benzene. In 4, a new layer pattern is observed. Specifically, three edge-sharing 4-rings form triple-fused 4-rings. These tertiary building units are further connected to form 12-rings. The alternating triple 4-rings and 12-rings form a previously unknown 2D inorganic sheet. The sheets are joined together by the bis(imidazole) ligand, 1,3-bis(imidazol-1-ylmethyl)benzene, to generate a 3D pillared-layer structure. In 4, benzene rings and imidazole rings stack in a zigzag pattern in the interlayer space. A significant role for the triple 4-ring tertiary building unit in the formation of hybrid inorganic/organic metal phosphite structures is proposed for 4 and 5. In 5, the triple 4-rings fuse to give a 1D stair-step structure. Calculations show that the triple 4-ring pattern observed in the linear ladder structure of 1 is more stable than that in the stair step pattern of 5.  相似文献   

17.
Dinuclear zinc(II) complexes [Zn(2)(bpmp)(mu-OH)](ClO(4))(2) (1) and [Zn(2)(bpmp)(H(2)O)(2)](ClO(4))(3) (2) (H-BPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) have been synthesized, structurally characterized, and pH-driven changes in metal coordination observed. The transesterification reaction of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) in the presence of the two complexes was studied both in a water/DMSO (70:30) mixture and in DMSO. Complex 2 was not reactive whereas for 1 considerable rate enhancement of the spontaneous hydrolysis reaction was observed. A detailed mechanistic investigation by kinetic studies, spectroscopic measurements ((1)H, (31)P NMR spectroscopy), and ESI-MS analysis in conjunction with ab initio calculations was performed on 1. Based on these results, two medium-dependent mechanisms are presented and an unusual bridging phosphate intermediate is proposed for the process in DMSO.  相似文献   

18.
Highly fluorinated, dihydridobis(3,5-bis(trifluoromethyl)pyrazolyl)borate ligand, [H(2)B(3,5-(CF(3))(2)Pz)(2)](-) has been synthesized and characterized as its potassium salt. The copper(II) and zinc(II) complexes, [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Cu and [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Zn, have been prepared by metathesis of [H(2)B(3,5-(CF(3))(2)Pz)(2)]K with Cu(OTf)(2) and Zn(OTf)(2), respectively. All the new metal adducts have been characterized by X-ray diffraction. The potassium salt is polymeric and shows several K.F interactions. The Cu center of [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Cu adopts a square planar geometry, whereas the Zn atom in [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Zn displays a tetrahedral coordination. Bis(pyrazolyl)borate ligands in the Zn adduct show a significantly distorted boat conformation. The nature and extent of this distortion is similar to that observed for the methylated analog, [H(2)B(3,5-(CH(3))(2)Pz)(2)](2)Zn. This ligand allows a comparison of electronic effects of bis(pyrazolyl)borate ligands with similar steric properties. Crystallographic data for [H(2)B(3,5-(CF(3))(2)Pz)(2)]K: triclinic, space group P&onemacr;, with a = 8.385(1) ?, b = 10.097(2) ?, c = 10.317(1) ?, alpha = 104.193(9) degrees, beta = 104.366(6) degrees, gamma = 91.733(9) degrees, V = 816.5(3) ?(3), and Z = 2. [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Cu is monoclinic, space group C2/c with a = 25.632(3) ?, b = 9.197(1) ?, c = 17.342(2) ?, beta = 129.292(5) degrees, V = 3164.0(6) ?(3), and Z = 4. [H(2)B(3,5-(CF(3))(2)Pz)(2)](2)Zn is triclinic, space group P&onemacr;, with a = 9.104(1) ?, b = 9.278(1) ?, c = 18.700(2) ?, alpha = 83.560(6) degrees, beta = 88.200(10) degrees, gamma = 78.637(9) degrees, V = 1538.8(3) ?(3), and Z = 2. [H(2)B(3,5-(CH(3))(2)Pz)(2)](2)Zn is monoclinic, space group C2/c with a = 8.445(1) ?, b = 14.514(2) ?, c = 19.983(3) ?, beta = 90.831(8) degrees, V = 2449.1(6) ?(3), and Z = 4.  相似文献   

19.
Wu CD  Lu CZ  Yang WB  Zhuang HH  Huang JS 《Inorganic chemistry》2002,41(12):3302-3307
Three novel 5-aminoisophthalic acid (AIP) bridged polymers [Co(C(8)NH(5)O(4))(H(2)O)](n)() (1), [Ni(C(8)NH(5)O(4))(H(2)O)(2)](n)() (2), and [Zn(C(8)NH(5)O(4))(H(2)O)](n)() (3) were synthesized by hydrothermal reactions and characterized by IR, Raman, elemental analysis, ESR, and magnetic measurements. X-ray single-crystal analyses were carried out for [Co(C(8)NH(5)O(4))(H(2)O)](n)() (1), which crystallizes in the triclinic system, space group P1 macro, with a = 6.477(1) A, b = 7.130(1) A, c = 9.826(2) A, alpha = 108.9(1) degrees, beta = 93.97(3) degrees, gamma = 98.82(3) degrees, and Z = 2; for [Ni(C(8)NH(5)O(4))(H(2)O)(2)](n)() (2), in the triclinic system, space group P1 macro, a = 6.425(1) A, b = 8.115(2) A, c = 10.146(2) A, alpha = 113.09(3)(o), beta = 99.64(3)(o), gamma = 98.90(3)(o), and Z = 2; and for [Zn(C(8)NH(5)O(4))(H(2)O)](n)() (3), in the monoclinic system, space group P2(1)/n, a = 9.044(1) A, b = 8.264(1) A, c = 11.646(1) A, beta = 100.77(1) degrees, and Z = 4. The single X-ray diffraction studies reveal that 1 consists of an infinite honeycomb layer formed by four crystallographically independent motifs packed alternatively together; 2 consists of an infinite neutral railroad-like linear polymer, and 3 consists of infinite layers of alternating four-coordinated Zn(II) cations and AIP ligands. Finally, they are all packed into beautiful three-dimensional frameworks through complicated hydrogen bonding. Antiferromagnetic and ferromagnetic behaviors were observed for 1 and 2 from the magnetic measurements.  相似文献   

20.
A family of thirteen tetranuclear heterometallic zinc(II)-lanthanide(III) complexes of the hexa-imine macrocycle (L(Pr))(6-), with general formula Zn(II)(3)Ln(III)(L(Pr))(NO(3))(3)·xsolvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb), were prepared in a one-pot synthesis using a 3:1:3:3 reaction of zinc(II) acetate, the appropriate lanthanide(III) nitrate, the dialdehyde 1,4-diformyl-2,3-dihydroxybenzene (H(2)L(1)) and 1,3-diaminopropane. A hexanuclear homometallic zinc(II) macrocyclic complex [Zn(6)(L(Pr))(OAc)(5)(OH)(H(2)O)]·3H(2)O was obtained using a 2:0:1:1 ratio of the same reagents. A control experiment using a 1:0:1:1 ratio failed to generate the lanthanide-free [Zn(3)(L(Pr))] macrocyclic complex. The reaction of H(2)L(1) and zinc(II) acetate in a 1:1 ratio yielded the pentanuclear homometallic complex of the dialdehyde H(2)L(1), [Zn(5)(L(1))(5)(H(2)O)(6)]·3H(2)O. An X-ray crystal structure determination revealed [Zn(3)(II)Pr(III)(L(Pr))(NO(3))(2)(DMF)(3)](NO(3))·0.9DMF has the large ten-coordinate lanthanide(III) ion bound in the central O(6) site with two bidentate nitrate anions completing the O(10) coordination sphere. The three square pyramidal zinc(II) ions are in the outer N(2)O(2) sites with a fifth donor from DMF. Measurement of the magnetic properties of [Zn(II)(3)Dy(III)(L(Pr))(NO(3))(3)(MeOH)(3)]·4H(2)O with a weak external dc field showed that it has a frequency-dependent out-of-phase component of ac susceptibility, indicative of slow relaxation of the magnetization (SMM behaviour). Likewise, the Er and Yb analogues are field-induced SMMs; the latter is only the second example of a Yb-based SMM. The neodymium, ytterbium and erbium complexes are luminescent in the solid phase, but only the ytterbium and neodymium complexes show strong lanthanide-centred luminescence in DMF solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号