首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.  相似文献   

2.
A finite element algorithm is presented for simultaneous calculation of the steady state, axisymmetric flows and the crystal, melt/crystal and melt/ambient interface shapes in the Czochralski technique for crystal growth from the melt. The analysis is based on mixed Lagrangian finite element approximations to the velocity, temperature and pressure fields and isoparametric approximations to the interface shape. Galerkin's method is used to reduce the problem to a non-linear algebraic set, which is solved by Newton's method. Sample solutions are reported for the thermophysical properties appropriate for silicon, a low-Prandtl-number semiconductor, and for GGG, a high–Prandtl–number oxide material. The algorithm is capable of computing solutions for both materials at realistic values of the Grashof number, and the calculations are convergent with mesh refinement. Flow transitions and interface shapes are calculated as a function of increasing flow intensity and compared for the two material systems. The flow pattern near the melt/gas/crystal tri-junction has the asymptotic form predicted by an inertialess analysis assuming the meniscus and solidification interfaces are fixed.  相似文献   

3.
浮区法因具有无坩埚接触污染的生长优点而成为生长高完整性和高均匀性单晶材料的重要技术.但熔体中存在的毛细对流会给浮区法晶体生长带来极大挑战,这是由于对流的不稳定会导致晶体微观瑕疵的产生和宏观条纹等缺陷的形成.为了提高浮区法生长单晶材料的品质,研究浮区法晶体生长中毛细对流特性及如何控制其不稳定性显得尤为重要.本文采用数值模拟的方法对半浮区液桥内SixGe1-x体系中存在的热质毛细对流展开研究并施加旋转磁场对其进行控制.结果表明:纯溶质毛细对流表现为二维轴对称模式,温度场主要由热扩散作用决定,而浓度场则由对流和溶质扩散共同支配;纯热毛细对流呈现三维稳态非轴对称流动,浓度分布与熔体内热毛细对流的流向密切相关,等温线在对流较大的区域发生弯曲;耦合溶质与热毛细对流则为三维周期性旋转振荡流.施加旋转磁场后,熔体周向速度沿径向向外增大,熔体内浓度场和流场均呈现二维轴对称分布.  相似文献   

4.
陈熙  薛明伦 《力学学报》1990,22(1):74-78
数值分析结果表明,外加磁场可以改变熔融半导体中的流型,几千高斯的磁场可以显著地减小熔体的流动,但对温度场影响不大。  相似文献   

5.
数值分析结果表明,外加磁场可以改变熔融半导体中的流型,几千高斯的磁场可以显著地减小熔体的流动,但对温度场影响不大。  相似文献   

6.
An asymptotic laminar-convection pattern in a plane horizontal liquid layer with a radially nonuniform temperature gradient on its boundaries is investigated. The problem arises in applications connected with modified Czochralski crystal growth technology using the heat field rotation method. An analytical model of the flow is compared with the results of experiments, specially carried out using model fluids and a technological melt. The conditions of adequacy of the model are analyzed and the restrictions on the parameter values and fluid thermophysical properties that ensure the validity of the model are found. The range of variation of the heat field rotation velocity for which the mixing of the melt in the crucible is maximum is determined.  相似文献   

7.
The generalized diagram of the critical Grashof numbers as functions of the Prandtl number is presented. The diagram shows the zones of occurrence of flow field and temperature fluctuations in the axisymmetric and three-dimensional formulations of the crystal growth model using the pulling from a melt. The structure of thermals at high Prandtl numbers and the distinctive features of the three-dimensional convection structure in the zones of stabilization and hazardous mode changeover at different Prandtl numbers are discussed. The effect of crystal rotation on the flow and temperature field patterns is estimated.  相似文献   

8.
Numerical results show that an external magnetic field may influence significantly the flow pattern in the molten semiconductor of Czochralski crystal growth. The melt flow could be pronouncedly damped by a magnetic field with the intensity of several thousands Gauss, while the temperature field is affected only in a less extent by the magnetic field. The project is supported by the National Natural Foundation of China.  相似文献   

9.
A three-dimensional numerical simulation has been performed to study the growth of Ge0.98Si0.02 by the Traveling Solvent Method. We attempted to suppress the buoyancy convection, in the Ge0.98Si0.02 melt zone, by applying axial and rotating magnetic fields. The effects of the applied magnetic field intensity, on the transport structures in the melt (flow and concentration fields, heat and mass transfer), have been investigated in detail. The steady-state full Navier–Stokes equations, as well as energy, mass species transport and continuity equations are numerically solved using the finite element method. By applying an axial magnetic field of various intensities (2, 10, and 22 mT), we found that as the axial magnetic field increases, the silicon distribution nearby the growth interface becomes more uniform. In the case of a rotating magnetic field, with different applied rotational speeds (2, 7 and 10 rpm), we found that such kind of magnetic field has a marked effect on the silicon concentration, which changes its shape from a convex one to a nearly flat shape as the magnetic field intensity increases. An alternative method to reduce or suppress buoyancy convection, in the melt zone, is the growing of the sample in a microgravity environment, with a gravity level of at least 10?4 the earth normal gravity level; in this case the results revealed smooth and almost perfect straight concentration contours, due to the buoyancy convection weakness.  相似文献   

10.
热弹耦合圆板非线性振动的研究   总被引:2,自引:0,他引:2  
对温度场中圆板的非线笥热弹耦合自由振动问题,由非线性振动方程、协调方程及热传导方程出发,动用伽辽金法求解,得出一个关于时间的非线笥常策分方程组。将热弹耦合与非热弹耦合情况进行对比,发现给定初始位移较小时,热弹耦合效应使板的固有频率相对与无热弹耦合情形提高;给定初始位移较大时,热弹耦合2使固有频率降低,该文不还比较了不同热弹参数和边界条件对热弹耦合效应的影响。  相似文献   

11.
微重力环境和外加磁场对晶体生长中杂质分凝的影响   总被引:1,自引:0,他引:1  
李凯  徐自亮 《力学进展》1999,29(2):221-231
浮区结晶法是生长体单晶的重要方法之一.本文从理论和实验两方面综述了浮区结晶法中熔体内宏观场对体单晶中杂质分布均匀性影响的定性和定量研究,并从改善体单晶杂质分布均匀性的角度出发,总结了目前所采取的两种重要方法:微重力环境和外加磁场的研究现状   相似文献   

12.
磁场对不同温度场中输流悬臂碳纳米管动态特性的影响   总被引:1,自引:0,他引:1  
本文在采用经典欧拉-伯努利梁模型的基础上,引入考虑小尺度效应的非局部弹性理论,着重研究不同温度场中输流悬臂单层碳纳米管系统(SWCNT)在外加纵向磁场作用下的颤振失稳问题。基于哈密顿原理获得了该流固耦合系统的振动控制方程及相应的边界条件,应用微分变换法(DTM法)求解此高阶偏微分方程,通过数值计算研究了不同温度场中施加纵向磁场对系统动力学特性的影响。结果表明:施加纵向磁场在不同温度场中都将增强输流悬臂碳纳米管的动态稳定性。然而,这种增强程度却与温度场的变化量有关,在不同温度变化量下,磁场对系统稳定性的增强程度有一个峰值,这意味着,实际应用中,为了提高这类流固耦合系统的动态稳定性,一味提高纵向磁场强度并不可取。  相似文献   

13.
A vertical melt column set up between an upper heating rod and a lower sample rod, i.e. the so-called halfzone system, is a convenient experimental tool for studying convection in the melt in floating-zone crystal growth. In order to help understand the convection observed in the melt column, a computer model has been developed to describe steady state, axisymmetrical thermocapillary flow and natural convection in the melt. The governing equations and boundary conditions are expressed in general non-orthogonal curvilinear co-ordinates in order to accurately treat the unknown melt/solid interface as well as all other physical boundaries in the system. The effects of key dimensionless variables on the following items are discussed: (1)convection and temperature distribution in the melt; (2) the shape of the melt/solid interface; (3) the height of the melt column. These dimensionless variables are the Grashof, Marangoni and Prandtl numbers.  相似文献   

14.
The effect of a standing acoustic wave on the development of long-wave convective perturbations in a horizontal layer with thermally insulated boundaries is investigated. The main two-dimensional flow is determined. A nonlinear amplitude equation with spatially-periodic coefficients is derived for investigating the stability of the main flow and secondary convection flows in the neighborhood of the stability threshold. The intensity of the acoustic field is assumed to be low. It is shown that the acoustic action leads to destabilization of the layer. Plane and three-dimensional perturbations are critical at large and small Prandtl numbers, respectively. Nonlinear one-dimensional steady-state solutions of the amplitude equation are obtained and their stability is investigated.  相似文献   

15.
The results of an analysis of thermo-gravitational convection in Czochralski single-crystal growth from a melt under periodic temperature field conditions are presented. The numerical modeling is based on solving the unsteady 3-D Navier-Stokes and heat conduction equations in the Boussinesq approximation. It is shown that using different heating regimes for the crystal medium provides additional opportunities for controlling heat and mass transfer.  相似文献   

16.
The process of diffusion growth of a single crystal of plagioclase (consisting of two components: albite and anorthite) from a cooling magma melt is considered. Crystallization starts when the temperature becomes lower than the melting (liquidus) temperature and occurs as a result of the diffusion of melt components to the boundary of the growing crystal. The crystallization process is simulated by solving a system of nonlinear, linked by cross terms, nonstationary diffusion equations for albite, anorthite, and residual melt in the coordinate system moving with the growing crystal boundary. The dependence of the crystal growth rate on undercooling and temperature and of its composition on temperature and pressure is taken into account. Both quantities substantially depend on the component concentration ratio in the melt on the crystal-melt interface. The competition between the diffusion and crystal growth processes and the complex dependence of these processes on the current melt and crystal compositions and the system temperature lead to a strong nonlinearity of the problem. As a result of numerical simulation, it is established that with a linear decrease in temperature the growing crystal composition changes nonmonotonically. This makes it possible to propose a novel interpretation of the crystal zoning typical of natural magmatic systems.  相似文献   

17.
In the neighborhood of a plane stagnation point, the flow and heat transfer of an incompressible fluid are studied. In the inner flow region, the velocity and pressure fields are described by the complete Navier-Stokes equations, and the temperature field is described by the complete energy equation. In the outer flow region, a two-term asymptotic solution of the corresponding equations is obtained. The problem is reduced to the numerical solution of ordinary differential equations. Numerical results are discussed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 52–65, July–August, 1996.  相似文献   

18.
Experimental techniques in natural convection heat transfer employed in the author's laboratory are introduced. The techniques are mostly related to visualization of flow, temperature field, and heat flux distribution in fluids. Three topics are presented, the first being natural convection in a horizontal rectangular liquid layer driven by surface tension and buoyancy. The patterns of flow were visualized by suspending fine aluminum flakes in the liquid. At the same time, the distribution of the temperature gradient in the liquid was visualized by an optical method making use of the refraction of light. The second topic is the onset of oscillatory convection in the Czochralski growth melt. In this case a forced flow due to rotation of the crystal and the vessel is superimposed on the buoyancy convection, resulting in an oscillatory flow under certain circumstances. The flow pattern and the temperature distribution in the liquid were visualized simultaneously by suspending in the liquid a microencapsulated temperature-sensitive liquid crystal. Periodical oscillation of the flow and the temperature was clearly recognized. The third topic is the rollover of double liquid layers that were stratified stably due to a density difference. A small-scale experiment was carried out to clarify the basic mechanism of rollover. The tracer method was used to visualize boundary layer flow along the vertical side wall and the shadowgraph technique to visualize the density distribution in the liquid layers. The article emphasizes the importance of visual observation in the investigation of natural convection phenomena.  相似文献   

19.
The influence of various types of vibration on the morphological instability of the directional crystallization front in binary melts is investigated numerically under microgravity and terrestrial conditions. The vibration frequency is assumed to be high and the amplitude to be small and an averaged approach is used. It is shown that high-frequency rotational vibration generates an intense mean flow localized in the neighborhood of the crystallization front and the direction of this flow is opposite to the direction of gravity-convection flow. Under terrestrial conditions the interaction between vibration flow and gravity convection leads to the gravitational vortex being pushed away from the crystallization front. Under both terrestrial and microgravity conditions rotational vibration has a strong stabilizing action on the morphological instability and prevents the formation of an axial hollow.  相似文献   

20.
An asymptotic solution is given for Mode II dynamic fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic—perfectly-plastic solid (plane strain). It is shown that, like for Modes I and III (Gao and Nemat-Nasser, 1983), the complete dynamic solution for Mode II predicts a logarithmic singularity for the strain field, but unlike for those modes which involve no elastic unloading, the pure Mode II solution includes two elastic sectors next to the stress-free crack surfaces. This is in contradiction to the quasi-static solution which predicts a small central plastic zone, followed by two large elastic zones, and then two very small plastic zones adjacent to the stress-free crack faces. The stress field for the complete dynamic solution varies throughout the entire crack tip neighborhood, admitting finite jumps at two shock fronts within the central plastic sector. This dynamic stress field is consistent with that of the stationary crack solution, and indeed reduces to it as the crack growth speed becomes zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号